Will This Mathematical Series Converge?

Click For Summary
The discussion focuses on determining the convergence of the series ∑_{i=1}^{∞} (√(2n-1) log(4n + 1))/(n(n + 1)). Participants suggest using comparison tests, specifically the Cauchy condensation test and the integral test, to analyze convergence. A key point made is that while the limit of the sequence approaches zero, this alone does not ensure convergence. By establishing an upper bound for the terms in the series, it can be shown that it resembles a convergent series of the form c log(n)/n^(3/2). Ultimately, the series converges based on these comparisons and bounds.
zonk
Messages
43
Reaction score
0

Homework Statement



Test for convergence or divergence. Give a reason for your decision.

Homework Equations



\sum_{i=1}^{\infty} \frac{\sqrt{2n-1} \log{(4n + 1)}}{n(n + 1)}

The Attempt at a Solution



I've tried to compare it to the series \sum_{i=1}^{\infty} \frac{\sqrt{2n-1} \log{(4n + 1)}}{n^2} and show the latter converges. I have no idea how to show this. Although the limit of the sequence approaches 0 as n goes to infinite, that is not enough to guarantee convergence. The book says it converges.
 
Last edited:
Physics news on Phys.org
Hi zonk! :smile:

Do you know the Cauchy condensation test? The integral test? These two could prove useful here.

What book are you using anyway?
 
It's Apostol volume 1. I think Cauchy's test is a section or two after this. Yes he did teach the integral test in this section.
 
OK, can you bring the series to something of the form

\sum{\frac{\log(n)}{n^{2-\frac{1}{2}}}}

this is suitable for the integral test
 
I can reduce it to:\sum_{i=1}^{\infty} \frac{\sqrt{2} \log{(4n + 1)}}{n^{(2 - \frac{1}{2})}} and can factor sqrt(2) out, but I don't see how you can get the log argument that way.
 
Last edited:
Well,

4n+1\leq n^2

For large n. Thus

\log(4n+1)\leq 2\log(n)

and you can factor the 2 out.
 
Oh, thank you so much, I would have never figured this out without those hints.
 
zonk said:

Homework Statement



Test for convergence or divergence. Give a reason for your decision.



Homework Equations



\sum_{i=1}^{\infty} \frac{\sqrt{2n-1} \log{(4n + 1)}}{n(n + 1)}

The Attempt at a Solution



I've tried to compare it to the series \sum_{i=1}^{\infty} \frac{\sqrt{2n-1} \log{(4n + 1)}}{n^2} and show the latter converges. I have no idea how to show this. Although the limit of the sequence approaches 0 as n goes to infinite, that is not enough to guarantee convergence. The book says it converges.

Let t(n) = nth term above. You could try to get a simple upper bound on t(n): sqrt(2n-1) < sqrt(2n), log(4n-1) < log(4n) and n(n+1) > n^2. Thus, t(n) < sqrt(2n)*log(4n)/n^2, which is of the form c*log(n)/n^(3/2). Convergence of sum log(n)/n^(3/2) is easier to show, and that implies convergence of sum t(n) [why?]

RGV
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K