MHB Win a $10 or $5 Prize in Tom's 4/19 Lottery Fundraiser

  • Thread starter Thread starter heyhey11
  • Start date Start date
AI Thread Summary
Tom's 4/19 lottery fundraiser involves selecting four winning numbers from 1 to 19, with various prize tiers based on how many numbers match. The participant confirmed that Tom's claim of over a 60% chance to win a $10 or $5 prize is correct, calculating a probability of approximately 63.2%. For determining an appropriate ticket price, it's suggested that the cost should be based on expected payouts and the desired fundraising goal, as it is not merely a break-even event. Additionally, the participant is seeking clarification on calculating probabilities for another scenario involving two discrete random variables, expressing uncertainty about their approach. Overall, the discussion focuses on understanding lottery probabilities and setting ticket prices for effective fundraising.
heyhey11
Messages
1
Reaction score
0
hello! I have two questions I needed some help with.

2. Tom is having a 4/19 lottery as a fundraiser; 4 winning numbers will be randomly selected without replacement out of the numbers from 1 to 19 inclusive. (similar to Ontario’s 6/49, with smaller numbers) The prizes are described below. For the questions below, define an appropriate random variable X.
Tickets Prize
All 4 winning numbers 1000 dollars
Any 3 of the winning numbers 100
Any 2 of the winning numbers 10
Any 1 of the winning numbers 5
None of the winning numbers 0
a) Tom claims that there is over a 60% chance that you can win a $10 or $5 prize. Is his claim correct?
b) What would be an appropriate cost per ticket. Explain your answer.
c) Given the cost suggested in part b), what is his expected profit on 100 tickets?
Note: Order doesn't matter for the numbers

I solved part a and got
p(X=4)= 1/19C4= 1/3876
p(X=3)= (4C3 * 15C1)/3876= 60/3876
p(X=2)= (4C2 * 15C2)/3876= 630/3876
p(X=1)= (4C1 * 15C3)/3876= 1820/3876
a. (630 + 1820)/3876≈ 0.632. which is 63.2%, so yes his claim is correct.

I needed help with b and c. For b, I know I should calculate expectations and then choose a price that gives a good revenue based on payout but I wasn't sure how.

3. A discrete random variable, X, is uniformly distributed between 1 and 10 inclusive and another discrete random variable, Y, is uniformly distributed between 5 and 15 inclusive. If one number from each set is selected at random, then determine P(Y < X ) .

I solved it the following:
(15 cases in which Y < X) ÷ (110 possible pairs) = 3/22

I got 15 cases because if Y is 5, X can be 6-10 (5 options), then if Y is 6, X can be 7-10 (4 options), if Y is 7, X can be 8-10 (3 options), if Y is 8, X can be 9 or 10 (2 options) and if Y is 9, X can be 10 ( 1 option).
5 +4+3+2+1= 15 cases in which Y < X)
and 11 X values x 10 Y values = 110 possible pairs

But I feel like it's the wrong approach as it doesn't use any probability distribution formula so I was looking for some help on it too.
Thanks in advance!
 
Mathematics news on Phys.org
For (b), to determine how much should be charged for a ticket, you idea would be correct if this were to be a "break even" event- all money brought in going out as prizes. But it isn't, it is a "fund-raiser"! Without knowing how much money is expected to be raised, it is impossible to say how much should be charged per ticket.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top