- #1
I_am_a_person
- 3
- 0
"Work done by an electric FIELD" = "Work done by electric FORCE"??
Problem 1
If the electric field does negative work on a negative charge as the charge undergoes a displacement from position A to position B within an electric field, then the electrical potential energy:
A) is negative
B) is positive
C) increases
D) decreases
E) Cannot be determined
Attempt at Solution
I assumed that "electric field does negative work" meant that the particle is moving opposite to electric field lines (if this assumption is false, and "electric field does negative work" should be interpreted as "electric FORCE does negative work", then I do not need further clarification). If so, since negative charges naturally move opposite to electric fields lines, then wouldn't potential energy decrease (D)? (The correct answer is "C": "increase")
Problem 2
Negative charges are accelerated by electric fields toward points
A) At lower electric potential
B) At higher electric potential
C) where the electric field is zero
D) where the electric field is weaker
E) where the electric field is stronger
ΔV = ΔU/q
Attempt at Solution
Again, I assumed that the direction of acceleration by an electric FIELD is the same direction as an electric FIELD LINE (again, if this assumption is wrong and "acceleration by an electric field" should be interpreted as "acceleration by an electric FORCE", then no further clarification is needed). If so, then if a negative charge moves in the direction of the field line, its potential energy increases (ΔU>0). Since ΔV = ΔU/q, and since ΔU>0, q<0, shouldn't ΔV be negative (A)? (The correct answer is "B": ΔV is positive)
General question: If a problem states, "an electric field does negative work on a negative charge", does the term "negative work" mean that the electric FORCE is opposite to the direction of motion or that the particle's motion is opposite the electric FIELD lines? Similarly, if a negative charge is being "accelerated electric field toward a point", is it being accelerated in the direction of the electric FIELD lines or the electric FORCE? (NOTE: The questions above were taken from a Princeton Review Subject SAT book)
Thanks in advance. And since I'm a newbie to physicsforums, I accidentally posted this outside of this HW help section, so if anyone knows how to delete posts, please enlighten me.
Homework Statement
Problem 1
If the electric field does negative work on a negative charge as the charge undergoes a displacement from position A to position B within an electric field, then the electrical potential energy:
A) is negative
B) is positive
C) increases
D) decreases
E) Cannot be determined
Homework Equations
Attempt at Solution
I assumed that "electric field does negative work" meant that the particle is moving opposite to electric field lines (if this assumption is false, and "electric field does negative work" should be interpreted as "electric FORCE does negative work", then I do not need further clarification). If so, since negative charges naturally move opposite to electric fields lines, then wouldn't potential energy decrease (D)? (The correct answer is "C": "increase")
Homework Statement
Problem 2
Negative charges are accelerated by electric fields toward points
A) At lower electric potential
B) At higher electric potential
C) where the electric field is zero
D) where the electric field is weaker
E) where the electric field is stronger
Homework Equations
ΔV = ΔU/q
Attempt at Solution
Again, I assumed that the direction of acceleration by an electric FIELD is the same direction as an electric FIELD LINE (again, if this assumption is wrong and "acceleration by an electric field" should be interpreted as "acceleration by an electric FORCE", then no further clarification is needed). If so, then if a negative charge moves in the direction of the field line, its potential energy increases (ΔU>0). Since ΔV = ΔU/q, and since ΔU>0, q<0, shouldn't ΔV be negative (A)? (The correct answer is "B": ΔV is positive)
General question: If a problem states, "an electric field does negative work on a negative charge", does the term "negative work" mean that the electric FORCE is opposite to the direction of motion or that the particle's motion is opposite the electric FIELD lines? Similarly, if a negative charge is being "accelerated electric field toward a point", is it being accelerated in the direction of the electric FIELD lines or the electric FORCE? (NOTE: The questions above were taken from a Princeton Review Subject SAT book)
Thanks in advance. And since I'm a newbie to physicsforums, I accidentally posted this outside of this HW help section, so if anyone knows how to delete posts, please enlighten me.