- #1
Peter G.
- 442
- 0
Hi,
I was thinking about the isothermal and adiabatic expansions in the Carnot Cycle and I was wondering:
In these processes, the gas is doing work. In the adiabatic change, the pressure (force), acts over a distance (expansion) transferring energy (Kinetic Energy) - but this is an adiabatic change, so it's impossible to transfer energy. Is it therefore, the process of the pressure expanding the gas that requires the use of energy - in this case, the Kinetic Energy of the molecules?
In the case of the isothermal change (I haven't studied the Second Law of Thermodynamics, but from the looks of it, it seems it isn't possible for this change to happen, but, anyway, ignoring that now...) heat energy is transferred to the gas. This thermal energy would increase the K.E, therefore, increasing the pressure and allowing for the same thing to happen - pressure acting over a distance (doing work) and this action requires energy, energy, in this case, Kinetic, which is equal to the amount of thermal energy transferred in: for ∆Q = 0 + ∆W
In those cases, the energy transfer would be from internal energy/KE to potential energy of the piston?
Are those correct?
I was thinking about the isothermal and adiabatic expansions in the Carnot Cycle and I was wondering:
In these processes, the gas is doing work. In the adiabatic change, the pressure (force), acts over a distance (expansion) transferring energy (Kinetic Energy) - but this is an adiabatic change, so it's impossible to transfer energy. Is it therefore, the process of the pressure expanding the gas that requires the use of energy - in this case, the Kinetic Energy of the molecules?
In the case of the isothermal change (I haven't studied the Second Law of Thermodynamics, but from the looks of it, it seems it isn't possible for this change to happen, but, anyway, ignoring that now...) heat energy is transferred to the gas. This thermal energy would increase the K.E, therefore, increasing the pressure and allowing for the same thing to happen - pressure acting over a distance (doing work) and this action requires energy, energy, in this case, Kinetic, which is equal to the amount of thermal energy transferred in: for ∆Q = 0 + ∆W
In those cases, the energy transfer would be from internal energy/KE to potential energy of the piston?
Are those correct?
Last edited: