- #1
Anmoldeep
- 15
- 2
How would you go about calculating the work done in morphing a square current-carrying loop into a circular current-carrying loop, without change in length while maintaining the same angular orientation with an external magnetic field.
My book suggests defining P(potential energy) = M.B (dot product of magnetic moment and magnetic field)
I am familiar with the above formula for a varying angle between M and B but not for a varying magnetic moment. If it's true please help me in deriving it.
Suppose for the question
1.) Edge if Square loop is 'a'
2.) Current = I
3.) Magnetic field (Uniform and perpendicular to the plane of the loop)
My book suggests defining P(potential energy) = M.B (dot product of magnetic moment and magnetic field)
I am familiar with the above formula for a varying angle between M and B but not for a varying magnetic moment. If it's true please help me in deriving it.
Suppose for the question
1.) Edge if Square loop is 'a'
2.) Current = I
3.) Magnetic field (Uniform and perpendicular to the plane of the loop)