MHB Work energy principle and power

AI Thread Summary
The discussion focuses on a physics problem involving two particles connected by a string over a pulley. The tension in the string is expressed as T = 40m/(m+2) N, derived from simultaneous equations based on the forces acting on the particles. The work-energy principle is applied to determine how high particle X rises after being released, with the work done by tension calculated as W = T * 1.2 meters. There is a request for clarification on the definitions of tension (T) and acceleration (a) in the equations provided. The conversation highlights the importance of clear notation in problem-solving.
Shah 72
MHB
Messages
274
Reaction score
0
Particle X of mass 2 kg , and particle Y of mass m kg are attached to the ends of a light inextensible string of length 4.8m. The string passes over a fixed smooth pulley and hangs vertically either side of the pulley. Particle X is held at ground level, 3m below the pulley. Particle X is released and rises while particle Y descends to the ground

a) Find an expression in terms of m for the tension in the string while both particles are moving.
By getting two equations
T-20=2a and T-10m=-ma
Solving simultaneously and removing a I got mT+2T-40m=0,
I finally got T=40m/(m+2) N
b) use work energy principle to find how close particle X gets to the pulley in subsequent motion.
Iam not able to get this ans. Pls help
 
Mathematics news on Phys.org
work done on the 2kg mass by the force of tension ...

$W = (T \, Newtons) \cdot (1.2 \, meters) = 2gH$, where $H$ is the highest point mass X rises above ground level.
 
skeeter said:
work done on the 2kg mass by the force of tension ...

$W = (T \, Newtons) \cdot (1.2 \, meters) = 2gH$, where $H$ is the highest point mass X rises above ground level.
Thanks!
 
The problem I have with
"a) Find an expression in terms of m for the tension in the string while both particles are moving.
By getting two equations
T-20=2a and T-10m=-ma"
is that you have not said what either "T" nor "a" are!

I can guess that "T" is the tension in the string and that "a" is the acceleration of the particles but you really should have said thar.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
873
Replies
2
Views
1K
Replies
4
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
16
Views
2K
Replies
9
Views
1K
Replies
17
Views
1K
Replies
8
Views
2K
Replies
2
Views
2K
Back
Top