Work to bring a charge to the center of two quarter circles

AI Thread Summary
The discussion revolves around calculating the work required to bring a charge to the center of two quarter circles with opposite linear charge densities. The electric field at point P is derived, leading to the conclusion that the work done is zero due to the condition that the linear charge densities are equal in magnitude but opposite in sign. An intuitive explanation provided indicates that as the charge is brought in along the line y = -x, the electric force acts perpendicular to the motion, resulting in no mechanical work being done. The participants also emphasize the importance of visualizing the arc arrangement for clarity. Overall, the conclusion that the work is zero is confirmed through both mathematical reasoning and intuitive understanding.
lorenz0
Messages
151
Reaction score
28
Homework Statement
Find the electric field at point C, which corresponds to the center of the two arcs of circumference with radius ##𝑅 = 10 cm## with uniform charge densities ##\lambda_1 = + 1nC / m## and ##\lambda_2 = -1 nC / m## respectively.
Also find the work required to bring a charge ##q= 5 \mu C## from infinity to point C.
Relevant Equations
##\vec{E}=\frac{kq}{r^2},\ V(r)=\frac{kq}{r}##
By measuring angle \theta from the positive ##x## axis counterclockwise as usual, I get ##d\vec{E}=k( (\lambda_2-\lambda_1)\cos(\theta)d\theta, (\lambda_2-\lambda_1)\sin(\theta)d\theta )## and by integrating from ##\theta=0## to ##\theta=\frac{\pi}{2}## I get ##\vec{E}(P)=\frac{k(\lambda_1-\lambda_2)}{R}(-1,-1)##.

Now, the work to bring a charge from infinity to point P should be (if we set ##V(\infty)=0##) ##L=qV(P)=q\int_{\theta=0}^{\theta=\pi/2}(\frac{k\lambda_1}{R}+\frac{k\lambda_2}{R})Rd\theta=0##

I am a bit unsure about the work being ##0##, it doesn't feel intuitive to me that it should be: is this correct? Is there an intuitive explanation for the work being ##0##? Thanks
 

Attachments

  • circle.png
    circle.png
    13.5 KB · Views: 140
Physics news on Phys.org
Please post either a diagram or a full description of the arc arrangement.
But just looking at the last line, I do not see how you get zero from that integral.
 
haruspex said:
Please post either a diagram or a full description of the arc arrangement.
But just looking at the last line, I do not see how you get zero from that integral.
I have posted the diagram; I get zero since ##\lambda_1=-\lambda_2##.
 
Last edited:
lorenz0 said:
Is there an intuitive explanation for the work being 0?
If you bring in the charge from infinity over the line ##y = -x##, the electric force is perpendicular to the motion, so no mechanical work is involved.

##\ ##
 
  • Like
Likes PeroK and lorenz0
BvU said:
If you bring in the charge from infinity over the line ##y = -x##, the electric force is perpendicular to the motion, so no mechanical work is involved.

##\ ##
I see, thank you very much!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top