- #1
simo1
- 29
- 0
if you given a function f from R^2 to R^2 f(x)=<f_1(x),f_2(x)>, x in R^2
with f_1 and f_2 from R^2 to R being differentiable on R. if there is contants K_1 and K_2 greater than or equal to 0 so the 2-norm of (gradient f_1(x)) is less than or equal to K_1 and 2-norm of (gradient f_2(x)) is less than or equal to K_2 for x in R^2.
show that the 2-norm of (f(x)-f(y)) is less than or equal to [square root of (k_1^2 -k_2^2)] multipy by 2-norm of (x-y) for all x and y in R^2
can i get hints on how to start
with f_1 and f_2 from R^2 to R being differentiable on R. if there is contants K_1 and K_2 greater than or equal to 0 so the 2-norm of (gradient f_1(x)) is less than or equal to K_1 and 2-norm of (gradient f_2(x)) is less than or equal to K_2 for x in R^2.
show that the 2-norm of (f(x)-f(y)) is less than or equal to [square root of (k_1^2 -k_2^2)] multipy by 2-norm of (x-y) for all x and y in R^2
can i get hints on how to start