Would Partial Fractions Simplify This Integral?

In summary: Therefore, $\displaystyle \begin{align*} I_{88} &= \arctan{ \left( \sqrt{ x^2 + 4\,x + 3 } \right) } + C \end{align*}$In summary, the integral $\displaystyle I_{88} = \int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx$ can be evaluated using the substitution $u=\sqrt{x^2+4x+3}$ and the standard integral formula $\displaystyle \int\frac{dx}{x^2+a^2} = \arctan\left(\frac{x}{a}\right) +
  • #1
karush
Gold Member
MHB
3,269
5
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=?
\end{align*}

would partial fractions be best for this?
 
Physics news on Phys.org
  • #2
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=?
\end{align*}

would partial fractions be best for this?

I would look at a substitution like:

\(\displaystyle u=\sqrt{x^2+4x+3}\implies dx=\frac{u}{x+2}\,du\)

And the integral then becomes:

\(\displaystyle I=\int\frac{1}{u^2+1}\,du\)
 
  • #3
$\displaystyle I=\int\frac{1}{u^2+1}\,du$
$\textit{then you have the standard form}\\$
\begin{align*}\displaystyle
I_{32}&=\int\frac{1}{a^2+x^2}\,dx\\
&=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+C
\end{align*}
$\textit{with $a=u$ and $x=1$ then}$
\begin{align*}\displaystyle
I&=\frac{1}{u}\tan^{-1}\left(\frac{x}{u}\right)+C
\end{align*}
$\textit{since $u=\sqrt{x^2+4x+3}$ and $x=1$}\\$
\begin{align*}\displaystyle
I&=\frac{1}{\sqrt{x^2+4x+3}}\tan^{-1}\left(\frac{1}{\sqrt{x^2+4x+3}}\right)+C
\end{align*}

Really?
 
Last edited:
  • #4
karush said:
$\displaystyle I=\int\frac{1}{u^2+1}\,du$
$\textit{then you have the standard form}\\$
\begin{align*}\displaystyle
I_{32}&=\int\frac{1}{a^2+x^2}\,dx\\
&=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+C
\end{align*}
$\textit{with $a=u$ and $x=1$ then}$
\begin{align*}\displaystyle
I&=\frac{1}{u}\tan^{-1}\left(\frac{x}{u}\right)+C
\end{align*}
$\textit{since $u=\sqrt{x^2+4x+3}$}\\$
\begin{align*}\displaystyle
I&=\frac{1}{\sqrt{x^2+4x+3}}\tan^{-1}\left(\frac{x}{\sqrt{x^2+4x+3}}\right)+C
\end{align*}

Really?

In the formula you've used, we have $a=1$...and so after back-substituting for $u$:

\(\displaystyle I=\arctan\left(\sqrt{x^2+4x+3}\right)+C\)
 
  • #5
did you flip

$u^2 + 1 $ to $1+u^2 $

to do this??
 
  • #6
karush said:
did you flip

$u^2 + 1 $ to $1+u^2 $

to do this??

No, but either way will work, because of the commutative property of addition.. :D
 
  • #7
so that is because

$u$ is in terms of $x$

so $a$ has to be $1$ ?
 
Last edited:
  • #8
It looks like you are trying to use integration formulas without understanding them.

Yes, [tex]\int\frac{dx}{x^2+ a^2}= arctan(x/a)+ C[/tex][/tex].]

From that it also follows that [tex]\int\frac{dy}{y^2+ a^2}= arctan(y/a)+ C[/tex],

[tex]\int\frac{dt}{t^2+ a^2}= arctan(t/a)+ C[/tex] and even

[tex]\int\frac{du}{u^2+ a^2}= arctan(u/a+ C[/tex].

Certainly, you should have learned that "a+ b= b+ a" back in basic arithmetic even if no one ever used the word "commutative".
 
  • #9
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=?
\end{align*}

would partial fractions be best for this?

$\displaystyle \begin{align*} \int{ \frac{1}{ \left( x + 2 \right) \sqrt{x^2 + 4\,x + 3} }\,\mathrm{d}x} &= \int{ \frac{2\,x + 4}{\left( 2\,x + 4 \right) \left( x + 2 \right) \sqrt{ x^2 + 4\,x + 3}}\,\mathrm{d}x } \\ &= \int{ \frac{2\, x + 4 }{2 \left( x + 2 \right) \left( x + 2 \right) \sqrt{x^2 + 4\,x + 3} } \,\mathrm{d}x } \\ &= \frac{1}{2} \int{ \frac{2\,x + 4}{\left( x^2 + 4\,x + 4 \right) \sqrt{x^2 + 4\,x + 3}} \,\mathrm{d}x } \\ &= \frac{1}{2} \int{ \frac{2\,x + 4}{\left( x^2 + 4\,x + 3 + 1 \right) \sqrt{x^2 + 4\,x + 3}} \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u= x^2 + 4\,x + 3 \implies \mathrm{d}u = \left( 2\,x + 4 \right) \, \mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{1}{2} \int{ \frac{2\,x + 4}{\left( x^2 + 4\,x + 3 + 1 \right) \sqrt{x^2 + 4\,x + 3}}\,\mathrm{d}x } &= \frac{1}{2} \int{ \frac{1}{\left( u + 1 \right) \sqrt{u} } \,\mathrm{d}u } \\ &= \int{ \frac{1}{ \left( \sqrt{u } \right) ^2 + 1 }\left( \frac{1}{2\,\sqrt{u}} \right) \,\mathrm{d}u } \end{align*}$

Let $\displaystyle \begin{align*} \sqrt{u } = \tan{ \left( \theta \right) } \implies \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u = \sec^2{ \left( \theta \right) }\,\mathrm{d}\theta \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{1}{\left( \sqrt{u} \right) ^2 + 1} \left( \frac{1}{2\,\sqrt{u}} \right) \,\mathrm{d}u } &= \int{ \frac{1}{\tan^2{ \left( \theta \right) } + 1}\,\sec^2{ \left( \theta \right) } \,\mathrm{d}\theta } \\ &= \int{ \frac{\sec^2{ \left( \theta \right) } }{\sec^2{ \left( \theta \right) }} \,\mathrm{d}\theta } \\ &= \int{
1\,\mathrm{d}\theta } \\ &= \theta + C \\ &= \arctan{ \left( \sqrt{u} \right) } + C \\ &= \arctan{ \left( \sqrt{ x^2 + 4\,x + 3 } \right) } + C \end{align*}$
 

FAQ: Would Partial Fractions Simplify This Integral?

What is a partial fraction decomposition?

A partial fraction decomposition is a method used to break down a rational expression (a fraction with polynomials in the numerator and denominator) into a sum of simpler fractions.

Why is partial fraction decomposition useful?

Partial fraction decomposition is useful because it allows us to simplify complex fractions, integrate rational functions, and solve differential equations.

How do you solve for the coefficients in a partial fraction decomposition?

To solve for the coefficients in a partial fraction decomposition, you can use the method of equating coefficients. This involves setting up a system of equations using the given rational expression and its decomposition, and then solving for the unknown coefficients.

Can all rational expressions be broken down into partial fractions?

Yes, all proper rational expressions (where the degree of the numerator is less than the degree of the denominator) can be broken down into partial fractions. Improper rational expressions can also be decomposed, but it may involve using additional techniques.

How is partial fraction decomposition used in real-world applications?

Partial fraction decomposition is commonly used in engineering and physics to solve problems involving differential equations. It is also used in economics and business to model complex systems and make predictions. Additionally, it is used in signal processing and control systems to analyze and design systems.

Similar threads

Replies
6
Views
2K
Replies
5
Views
2K
Replies
6
Views
2K
Replies
8
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
Back
Top