- #1
karush
Gold Member
MHB
- 3,269
- 5
nmh{2000} index{expanded form}
write each expression in expanded form and then find the sum
$
\begin{array}{l}
{{9}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{n}\mathrm{{=}}{3}}\limits^{5}{\mathrm{(}{n}^{2}}\mathrm{{-}}{2}^{n}{\mathrm{)}}}=(3^2-2^3)+(4^2-2^4)+(5^2-2^5)=-6
\\{{\mathrm{10}}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{t}\mathrm{{=}}{1}}\limits^{5}{{t}{\mathrm{(}}{t}\mathrm{{-}}{1}{\mathrm{)}}}}
=1(1-1)+2(2-1)+3(3-1)+5(5-1)=40
\\{{\mathrm{11}}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{i}\mathrm{{=}}{1}}\limits^{\mathrm{\infty}}{\mathrm{10}{\mathrm{\left({\frac{1}{2}}\right)}}^{i}}}
+10\left(\frac{1}{2}\right)^1
+10\left(\frac{1}{2}\right))^2
+10\left(\frac{1}{2}\right)^3
...=10\left(\frac{1}{2}\right)^i=10
\end{array}
$
hoped answers ok
no sure how to expand 11)
write each expression in expanded form and then find the sum
$
\begin{array}{l}
{{9}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{n}\mathrm{{=}}{3}}\limits^{5}{\mathrm{(}{n}^{2}}\mathrm{{-}}{2}^{n}{\mathrm{)}}}=(3^2-2^3)+(4^2-2^4)+(5^2-2^5)=-6
\\{{\mathrm{10}}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{t}\mathrm{{=}}{1}}\limits^{5}{{t}{\mathrm{(}}{t}\mathrm{{-}}{1}{\mathrm{)}}}}
=1(1-1)+2(2-1)+3(3-1)+5(5-1)=40
\\{{\mathrm{11}}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{i}\mathrm{{=}}{1}}\limits^{\mathrm{\infty}}{\mathrm{10}{\mathrm{\left({\frac{1}{2}}\right)}}^{i}}}
+10\left(\frac{1}{2}\right)^1
+10\left(\frac{1}{2}\right))^2
+10\left(\frac{1}{2}\right)^3
...=10\left(\frac{1}{2}\right)^i=10
\end{array}
$
hoped answers ok
no sure how to expand 11)
Last edited: