- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- ##\dfrac{e^x}{1+e^{2x}}##
- Relevant Equations
- hyperbolic equations
My take;
##2\cosh x = e^x +e^{-x}##
I noted that i could multiply both sides by ##e^x## i.e
##e^x⋅2\cosh x = e^x(e^x +e^{-x})##
##e^x⋅2\cosh x = e^{2x}+1##
thus,
##\dfrac{e^x}{1+e^{2x}}=\dfrac{\cosh x + \sinh x}{e^x⋅2\cosh x}##
##= \dfrac{\cosh x + \sinh x}{(\cosh x + \sinh x)⋅2\cosh x}##
##=\dfrac{1}{2\cosh x}##
any other approach is welcome.
##2\cosh x = e^x +e^{-x}##
I noted that i could multiply both sides by ##e^x## i.e
##e^x⋅2\cosh x = e^x(e^x +e^{-x})##
##e^x⋅2\cosh x = e^{2x}+1##
thus,
##\dfrac{e^x}{1+e^{2x}}=\dfrac{\cosh x + \sinh x}{e^x⋅2\cosh x}##
##= \dfrac{\cosh x + \sinh x}{(\cosh x + \sinh x)⋅2\cosh x}##
##=\dfrac{1}{2\cosh x}##
any other approach is welcome.
Last edited by a moderator: