- #1
Chijioke
- 14
- 3
- Homework Statement
- Write this in a form not involving logarithm.
- Relevant Equations
- $$\log_x(y)=1/\log_y(x)$$
logyx + logxy = 3/2
Solution
$$\begin{align*}\log_{ y }{ x } + \log_{ x }{ y } &= \frac{ 3 }{ 2 } \\
\log_{ x }{ y } &= \frac{ \log_{ y }{ y } }{ \log_{ y }{ x } } \\
\log_{ y }{ x } + \frac{ 1 }{ \log_{ y }{ x } } &= \frac{ 3 }{ 2 } \\
\left(\log_{ y }{ x } \right)^ { 2 } + 1 &= \frac{ 3 }{ 2 } \left(\log_{ y }{ x } \right) \\
\left(\log_{ y }{ x } \right) ^ { 2 } &= \frac{ 3 }{ 2 } \left(\log_{ y }{ x }\right) - 1
\end{align*}$$
What do I do next?
Solution
$$\begin{align*}\log_{ y }{ x } + \log_{ x }{ y } &= \frac{ 3 }{ 2 } \\
\log_{ x }{ y } &= \frac{ \log_{ y }{ y } }{ \log_{ y }{ x } } \\
\log_{ y }{ x } + \frac{ 1 }{ \log_{ y }{ x } } &= \frac{ 3 }{ 2 } \\
\left(\log_{ y }{ x } \right)^ { 2 } + 1 &= \frac{ 3 }{ 2 } \left(\log_{ y }{ x } \right) \\
\left(\log_{ y }{ x } \right) ^ { 2 } &= \frac{ 3 }{ 2 } \left(\log_{ y }{ x }\right) - 1
\end{align*}$$
What do I do next?
Last edited by a moderator: