MHB Writing formulas to describe isometries

  • Thread starter Thread starter kalish1
  • Start date Start date
  • Tags Tags
    Formulas Writing
kalish1
Messages
79
Reaction score
0
Hi,
I have a question that I don't know where to start on!

First, some necessary background info:

$r$ denotes reflection about the $x$-axis.
$t_a$ denotes translation by a vector $a$
$p_{\theta}$ denotes rotation by an angle $\theta$ about the origin

Let $s$ be the rotation of the plane with angle $\pi/2$ about the point $(1,1)^t$.

1. Write the formula for $s$ as a product $t_a*p_{\theta}$.

2. Let s denote reflection of the plane about the vertical axis $x=1$. Find an isometry $g$ such that $grg^{-1}=s$, and write s in the form $t_a*p_{\theta}*r$.

Thanks in advance for any help!
 
Last edited:
Physics news on Phys.org
Some thoughts to get you started on part (1):

Which points in the plane are likely candidates for the point $a$?

Which angles are likely candidates for the rotation angle $\theta$?

Try "modelling" the proposed rotation with 2 superimposed sheets of paper (semi-transparent paper might be helpful, or write very darkly on the bottom sheet so you can see it under the first sheet).
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top