- #1
approx12
- 11
- 6
- Homework Statement
- Given a square with side length ##a## and a surface charge of ##\sigma## for ##y>0## and ##\epsilon \sigma## for ##y<0##, write down the charge density ##\rho(\vec{x})## in terms of the dirac delta function.
- Relevant Equations
- ##\rho(\vec{x})=\sigma \cdot...##
Hey guys! Sorry if this is a stupid question but I'm having some trouble to express this charge distribution as dirac delta functions.
I know that the charge distribution of a circular disc in the ##x-y##-plane with radius ##a## and charge ##q## is given by $$\rho(r,\theta)=qC_a \delta(\theta-\pi/2)\delta(r-a)$$ (with ##C_a## being a fitting constant). Based on this I've tried to write down the charge distribution of the rectangle as follows: $$\rho(\vec{x})=C\sigma(\delta(x-a/2)+\delta(y-a/2)+\epsilon \delta(x-a/2)+\epsilon \delta(y+a/2))$$ (With ##C## and ##C_{\epsilon}## being fitting constants)
I do not know though if this is a correct way to write it down or if I have to approach it in some other way. It would be awesome if anyone could give me some strategy on how to think about problems like this. Thank you!
I know that the charge distribution of a circular disc in the ##x-y##-plane with radius ##a## and charge ##q## is given by $$\rho(r,\theta)=qC_a \delta(\theta-\pi/2)\delta(r-a)$$ (with ##C_a## being a fitting constant). Based on this I've tried to write down the charge distribution of the rectangle as follows: $$\rho(\vec{x})=C\sigma(\delta(x-a/2)+\delta(y-a/2)+\epsilon \delta(x-a/2)+\epsilon \delta(y+a/2))$$ (With ##C## and ##C_{\epsilon}## being fitting constants)
I do not know though if this is a correct way to write it down or if I have to approach it in some other way. It would be awesome if anyone could give me some strategy on how to think about problems like this. Thank you!