I Writing the Lagrangians for different frames depending on how "the ball is dropped"

AI Thread Summary
The discussion focuses on checking the homogeneity of vertical space using Lagrangians in the context of a dropped ball. Two Lagrangians are presented, illustrating passive transformations based on the relationship between different frames of reference. The first question addresses whether the Lagrangians represent passive transformations, while the second question explores how to write Lagrangians for active transformations involving different drop heights. The original poster expresses a desire to clarify their understanding and requests the closure of a previous thread deemed incorrectly framed. The thread concludes with confirmation of the closure and acknowledgment of the poster's resolution.
gionole
Messages
281
Reaction score
24
I wanna be checking homogeneity of space(only interested in vertical) for simplicity and example we can do is "ball is dropped". To check homogeneity, we use either passive or active transformation and I'm interested in lagrangians.

I heard that we can write lagrangians such as: ##L = \frac{1}{2}m\dot q^2 - mgy## and ##L' = \frac{1}{2} m\dot q'^2 - mg(y'+a)##. This comes from the fact that ##y = y'+a##. (we seem to have y and y' frame).

Question 1: it seems to me that lagrangians that I wrote are an example of passive transformation, because of ##y = y'+a##. It's like the ball is only dropped from single location(one experiment), but we write lagrangians for the ball such as seen from each frame. Is this right ? as in, am I right that this is passive, or can we also call it active ?

Question 2: Active transformation seems such as ball must be dropped from 2 different locations(2 different locations). So we drop a ball from some height, and then we move up and drop it from higher location. How would we go about writing Lagrangians for each experiment ? using the same lagrangians as shown above doesn't seem correct to me, as I think it's passive.
 
Physics news on Phys.org
@berkeman would love to remove that thread as the question there is not asked correctly. but i can't delete it.
 
  • Like
Likes Dale
gionole said:
@berkeman would love to remove that thread as the question there is not asked correctly. but i can't delete it.
Okay, I closed off the previous thread with a note pointing to this improved version here.
 
@berkeman can you close this as well ? Don't want people to spend time on it. I've figured it out. Thanks.
 
Sure, thanks for the heads-up. I've closed off this thread now; I'm glad that you figured it out.
 
  • Like
Likes gionole
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...

Similar threads

Replies
4
Views
1K
Replies
64
Views
3K
Replies
1
Views
1K
Replies
7
Views
1K
Replies
13
Views
1K
Replies
11
Views
2K
Replies
3
Views
1K
Replies
1
Views
1K
Back
Top