(x) and (x,y) are prime ideals of Q[x,y]

  • MHB
  • Thread starter mathmari
  • Start date
  • Tags
    Prime
In summary: It's perhaps easiest to first note that $\Bbb Q[x,y] \cong (\Bbb Q[y])[x]$. I leave you to puzzle out what this isomorphism has to be. We will use this isomorphism to equate the two rings (we can call this "collecting like terms of $x^k$"). For example, if:$f(x,y) = a_0 + a_1x + a_2y + a_3x^2 + a_4xy + a_5y^2 + a_6x^3 + a_7x^2y + a_8xy^2 + a_9y^
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :eek:

I want to show that the ideals $(x)$ and $(x,y)$ are prime ideals of $\mathbb{Q}[x,y]$ but only the second one is a maximal ideal.

We have to show that $\mathbb{Q}[x,y]/(x)$ and $\mathbb{Q}[x,y]/(x,y)$ are integral domains, right? (Wondering)

How could we show it? Could you give me a hint? (Wondering)
 
Physics news on Phys.org
  • #2
Modding by a finitely-generated ideal has the effect of essentially setting the generators equal to 0.

See if you can prove that $\Bbb Q[x,y]/(x) \cong \Bbb Q[y]$, and $\Bbb Q[x,y]/(x,y) \cong \Bbb Q$, by finding surjective ring homomorphisms for which these ideals are kernels.
 
  • #3
Deveno said:
Modding by a finitely-generated ideal has the effect of essentially setting the generators equal to 0.

See if you can prove that $\Bbb Q[x,y]/(x) \cong \Bbb Q[y]$, and $\Bbb Q[x,y]/(x,y) \cong \Bbb Q$, by finding surjective ring homomorphisms for which these ideals are kernels.

To show that $\Bbb Q[x,y]/(x) \cong \Bbb Q[y]$ do we use the following mapping? (Wondering)
$$h:\mathbb{Q}[x,y]\rightarrow \mathbb{Q}[y] \\ f(x,y)\mapsto f(0,y)$$

Then does it hold that $h(f_1(x,y)\cdot f_2(x,y))=f_1(0,y)\cdot f_2(0,y)$ and $h(f_1(x,y))\cdot h(f_2(x,y))=f_1(0,y)\cdot f_2(0,y)$ ? (Wondering)

If this is true, then we have that $h$ is an homomorphism.

So, we have to show that the kernel is $(x)$, right? But how could we do that? (Wondering)
 
  • #4
It's perhaps easiest to first note that $\Bbb Q[x,y] \cong (\Bbb Q[y])[x]$. I leave you to puzzle out what this isomorphism has to be. We will use this isomorphism to equate the two rings (we can call this "collecting like terms of $x^k$"). For example, if:

$f(x,y) = a_0 + a_1x + a_2y + a_3x^2 + a_4xy + a_5y^2 + a_6x^3 + a_7x^2y + a_8xy^2 + a_9y^3$, then we have:

$f(x,y) = f_0(y) + f_1(y)x + f_2(y)x^2 + f_3(y)x^3$, where:

$f_0(y) = a_0 + a_2y + a_5y^2 + a_9y^3$
$f_1(y) = a_1 + a_4y + a_8y^2$
$f_2(y) = a_3 + a_7y$
$f_3(y) = a_6$.

Now for any commutative ring $R$ we have for any extension ring $S$ of $R$, and any $a \in S$, a unique homomorphism:

$\phi_a: R[x] \to S$, given by $\phi_a(f(x)) = f(a)$, the so-called "evaluation at $a$ homomorphism". This is, in fact, one of the *defining properties* of a polynomial ring.

Now take $R = \Bbb Q[y]$, and we see that:

$f(x,y) \mapsto f(0,y)$ is just the evaluation homomorphism $\phi_0$. You can also show this is a homomorphism directly, it's not hard (but tedious).

Now if $g \in (x)$, we have $g(x,y) = xr(x,y)$, for some $r \in \Bbb Q[x,y]$.

So, $\phi_0(g) = \phi_0(xr) = 0r(0,y) = 0$, which shows $(x) \subseteq \text{ker }\phi_0$.

On the other hand, suppose $\phi_0(f(x,y)) = 0$.

Since $f(x,y) = f_0(y) + f_1(y)x + \cdots + f_n(y)x^n$

we have $\phi_0(f(x,y)) = f_0(y) + f_1(y)\cdot 0 + \cdots + f_n(y)\cdot 0^n = f_0(y)$.

Since this is $0 \in \Bbb Q[y]$, we have $f_0(y) = 0$, and thus:

$f(x,y) = x(f_1(y) + f_2(y)x + \cdots + f_n(y)x^{n-1}) \in (x)$, so $\text{ker }\phi_0 \subseteq (x)$.

Now do this process TWICE to get two surjective homomorphisms:

$\Bbb Q[x,y] \to \Bbb Q[y] \to \Bbb Q$, whose composition is thus *also* a surjective homomorphism (let's call it $\pi$).

It is easy to show that $(x,y) \subseteq \text{ker }\pi$. A similar argument as above may help you with the other inclusion.
 
Last edited:
  • #5
I understand! Thank you very much! (Yes)

I want to show also that the ideal $(2,x,y)$ is a prime ideal of $\mathbb{Z}[x,y]$.

What is $\mathbb{Z}[x,y]/(2,x,y)$ isomorphic to? (Wondering)
 

FAQ: (x) and (x,y) are prime ideals of Q[x,y]

What is the definition of a prime ideal?

A prime ideal is a type of ideal in abstract algebra that shares some properties with prime numbers in arithmetic. Specifically, in a ring of elements, an ideal is considered prime if it cannot be factored into two smaller ideals. In other words, the only way to generate the ideal is by multiplying it by the whole ring.

How does an ideal become prime in the context of polynomials in multiple variables?

In the context of polynomials in multiple variables, an ideal is prime if it cannot be generated by two polynomials with coefficients in the ring of polynomials. This means that the polynomials cannot be factored into two smaller polynomials with coefficients in the ring, similar to the definition of prime ideals in abstract algebra.

What is the significance of Q[x,y] in relation to prime ideals?

Q[x,y] refers to the ring of polynomials with coefficients in the field of rational numbers. This ring is important in the context of prime ideals because it allows for the study of prime ideals in polynomials with multiple variables, rather than just a single variable. This expands the understanding of prime ideals and their properties in abstract algebra.

How can one determine if two ideals, (x) and (x,y), are prime in Q[x,y]?

To determine if two ideals are prime in Q[x,y], one can use the ideal membership test. This involves checking if every polynomial in the ring Q[x,y] that is not in the ideal can be generated by multiplying two polynomials in the ideal. If this is not the case, then the ideal is prime.

What are some applications of studying prime ideals in Q[x,y]?

The study of prime ideals in Q[x,y] has various applications, such as in algebraic geometry, coding theory, and number theory. In algebraic geometry, prime ideals can help determine the geometry of a polynomial ring, while in coding theory, they can be used to construct error-correcting codes. In number theory, prime ideals can be used to study prime numbers and their properties in different rings.

Similar threads

Replies
1
Views
1K
Replies
52
Views
3K
Replies
16
Views
3K
Replies
7
Views
2K
Replies
4
Views
2K
Replies
24
Views
3K
Back
Top