- #1
kottur
- 56
- 0
Homework Statement
Use equations x[itex]_{cm}[/itex]=[itex]\frac{1}{M}[/itex][itex]\int x dm[/itex] and y[itex]_{cm}[/itex]=[itex]\frac{1}{M}[/itex][itex]\int y dm[/itex] to calculate the x- and y-coordinates of the center of mass of a semicircular metal plate with uniform density [itex]\rho[/itex] and thickness t. Let the radius of the plate be R. The mass of the plate is thus M=[itex]\frac{1}{2}[/itex][itex]\rho\pi[/itex]a[itex]^{2}t[/itex].
Use the coordinate system indicated in the figure.
1. Calculate the x-coordinate of the center of mass of a semicircular metal plate. Express your answer in terms of the variables a, ρ and t.
2. Calculate the y-coordinate of the center of mass of a semicircular metal plate. Express your answer in terms of the variables a, ρ and t.
Homework Equations
I think these:
[itex]\vec{r_{cm}}[/itex]=[itex]\frac{m_{1}\vec{r_{1}}+m_{2}\vec{r_{2}}+...}{m_{1}+m_{2}}[/itex]
But instead of the sum I need to integrate, right?
Does this equation work in 3D?
The Attempt at a Solution
I'm not sure how to use the equation and what information to use where.
To find x-coordinate:
x[itex]_{cm}[/itex]=[itex]\frac{Mx_{cm}}{M}[/itex]=x[itex]_{cm}[/itex] ??
y[itex]_{cm}[/itex]=[itex]\frac{My_{cm}}{M}[/itex]