- #1
beetle2
- 111
- 0
Homework Statement
Let {e1,e2,e3} be a basis for the vector space V, and [itex]T:V \rightarrow V [/itex] a linear transformation.
let f1 ;= e1 f2;=e1+e2 f3;=e1+e2+e3
Find the Matrix B of T with respect to {f1,f2,f3} given that the matrix with respect to {e1,e2,e3} is
[itex]\[ \left( \begin{array}{ccc}1 & 1 &1 \\1 & 1 & 0\\ 1 & 0 & 0\\\end{array} \right)^{-1}\] [/itex]
Homework Equations
The Attempt at a Solution
Let A be the matrax of the basis {f1,f2,f3}
A= [itex]\[ \left( \begin{array}{ccc}1 & 1 &1 \\0 & 1 & 1\\ 0 & 0 & 1\\\end{array} \right)\] [/itex]
Than,
B= [itex]\[ \left( \begin{array}{ccc}1 & 1 &1 \\0 & 1 & 1\\ 0 & 0 & 1\\\end{array} \right)^{-1}\] [/itex][itex]\[ \left( \begin{array}{ccc}1 & 1 &1 \\1 & 1 & 0\\ 1 & 0 & 0\\\end{array} \right)\] [/itex][itex]\[ \left( \begin{array}{ccc}1 & 1 &1 \\0 & 1 & 1\\ 0 & 0 & 1\\\end{array} \right)\] [/itex]
B=[itex]\[ \left( \begin{array}{ccc}0 & 0 &1 \\0 & 1 & 1\\ 1 & 1 & 1\\\end{array} \right)\] [/itex]
Does this look allright?