MHB Yes, the correct solution would be to subtract (x/2) from both sides, not 2x.

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Quadratic
AI Thread Summary
The discussion centers on solving the quadratic inequality 2/x < x/2. The correct approach involves subtracting x/2 from both sides rather than multiplying, leading to the expression (4 - x^2)/(2x) < 0. This reveals critical values at -2, 0, and 2, resulting in four intervals for testing. The valid solution intervals are found to be (-2, 0) and (2, infinity), while the endpoints -2 and 2 are excluded from the solution. The conclusion emphasizes the importance of the correct algebraic manipulation in solving the inequality.
mathdad
Messages
1,280
Reaction score
0
Solve the quadratic inequality.

2/x < x/2

Multiply both sides by 2x.

(2x)*(2/x) < (2x)(x/2)

4 < x^2

4 = x^2

sqrt{4} = sqrt{x^2}

-2 = x

2 = x

Our end points are -2 and 2.

<------(-2)----------(2)------->

For (-infinity, -2), let x = -3. In this interval, we get true.

For (-2, 2), let x = 0. In this interval, we get false.

For (2, infinity), let x = 3. In this interval, we get true.

Test the end points.

Let x = -2 and x = 2.

At x = -2, we get false.

At x = 2, we get false.

We exclude the test points.

Solution: (-infinity, -2) U (2, infinity)

Correct?
 
Mathematics news on Phys.org
RTCNTC said:
Solve the quadratic inequality.

2/x < x/2

Multiply both sides by 2x.

You are assuming x is positive when you do that. A better step is to subtract x/2 from both sides:

$$\frac{2}{x}-\frac{x}{2}<0$$

Combine terms:

$$\frac{4-x^2}{2x}<0$$

$$\frac{(2+x)(2-x)}{2x}<0$$

Now we see we have 3 critical values which give us 4 intervals:

$$(-\infty,-2)$$ Test value: x = -3: expression is (-)(+)/(-) = + not part of solution. Other intervals will alternate...

$$(-2,0)$$ is part of solution.

$$(0,2)$$ not part of solution.

$$(2,\infty)$$ is part of solution.

And so the solution is:

$$(-2,0)\,\cup\,(2,\infty)$$
 
You meant to say subtract (x/2) from both sides not 2x.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top