- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{Find the vector perpendicular to the plane PQR
determined by the points}$
\begin{align*}\displaystyle
&P(2,1,3), \, Q(1,1,2), \, R(2,2,1)\\ \end{align*}
$$\textbf{ solution:}$$
\begin{align*}\displaystyle
\vec{PQ}&=(1-2)i+(1-1)J+(2-3)k=&-i-k\\
\vec{PR}&=(2-2)i+(2-1)j+(1-3)k=&j-2k
\end{align*}
\begin{align*}\displaystyle
\vec{PQ} \times \vec{PR}&=
\begin{vmatrix}
i&j&k\\-1&0&-1\\0&1&-2
\end{vmatrix}\\
&=
\begin{vmatrix}
0&-1\\1&-2
\end{vmatrix}i-
\begin{vmatrix}
-1&-1\\0&-2
\end{vmatrix}j-
\begin{vmatrix}
-1&0\\0&1
\end{vmatrix}k\\
&=(0+1)i-(2+0)j+(-1+0)k\\
&=i-2j-k\\
%&=\\
\text{book answer}&=\frac{1}{\sqrt{6}}(i-2j-k)
\end{align*}
ok I don't know where the $\displaystyle \frac{1}{\sqrt{6}}$ comes from
just that $\displaystyle\sqrt{1^2+2^2+1^1} = \sqrt{6}$
determined by the points}$
\begin{align*}\displaystyle
&P(2,1,3), \, Q(1,1,2), \, R(2,2,1)\\ \end{align*}
$$\textbf{ solution:}$$
\begin{align*}\displaystyle
\vec{PQ}&=(1-2)i+(1-1)J+(2-3)k=&-i-k\\
\vec{PR}&=(2-2)i+(2-1)j+(1-3)k=&j-2k
\end{align*}
\begin{align*}\displaystyle
\vec{PQ} \times \vec{PR}&=
\begin{vmatrix}
i&j&k\\-1&0&-1\\0&1&-2
\end{vmatrix}\\
&=
\begin{vmatrix}
0&-1\\1&-2
\end{vmatrix}i-
\begin{vmatrix}
-1&-1\\0&-2
\end{vmatrix}j-
\begin{vmatrix}
-1&0\\0&1
\end{vmatrix}k\\
&=(0+1)i-(2+0)j+(-1+0)k\\
&=i-2j-k\\
%&=\\
\text{book answer}&=\frac{1}{\sqrt{6}}(i-2j-k)
\end{align*}
ok I don't know where the $\displaystyle \frac{1}{\sqrt{6}}$ comes from
just that $\displaystyle\sqrt{1^2+2^2+1^1} = \sqrt{6}$