- #1
karush
Gold Member
MHB
- 3,269
- 5
Evaluate $\displaystyle \int\sin^2 \left({x}\right)\cos^2 \left({x}\right)$
$\displaystyle
\sin^2\left({x}\right)
=\frac{1-\cos\left({2x}\right)}{2}$ and $\displaystyle
\cos^2 \left({x}\right)
=\frac{1+\cos\left({2x}\right)}{2}$
So
$\displaystyle
\int\frac{1-\cos\left({2x}\right)}{2}
\cdot
\frac{1+\cos\left({2x}\right)}{2} \ dx
\implies
\frac{1}{4}\int 1-\cos^2 \left({2x} \right) \ dx$
Not sure how to deal with the $\cos^2 \left({2x}\right) $
$\displaystyle
\sin^2\left({x}\right)
=\frac{1-\cos\left({2x}\right)}{2}$ and $\displaystyle
\cos^2 \left({x}\right)
=\frac{1+\cos\left({2x}\right)}{2}$
So
$\displaystyle
\int\frac{1-\cos\left({2x}\right)}{2}
\cdot
\frac{1+\cos\left({2x}\right)}{2} \ dx
\implies
\frac{1}{4}\int 1-\cos^2 \left({2x} \right) \ dx$
Not sure how to deal with the $\cos^2 \left({2x}\right) $