- #1
mathsss2
- 38
- 0
Z-module Question
Let [tex]M[/tex] be the [tex]\mathbb{Z}[/tex]-module generated by the elements [tex]v_1[/tex], [tex]v_2[/tex] such that [tex](1+i)v_1+(2-i)v_2=0[/tex] and [tex]3v_1+5iv_2=0[/tex]. Find an integer [tex]r \geq 0[/tex] and a torsion [tex]\mathbb{Z}[/tex]-module [tex]T[/tex] such that [tex]M \cong \mathbb{Z}^r \times T[/tex].
Let [tex]M[/tex] be the [tex]\mathbb{Z}[/tex]-module generated by the elements [tex]v_1[/tex], [tex]v_2[/tex] such that [tex](1+i)v_1+(2-i)v_2=0[/tex] and [tex]3v_1+5iv_2=0[/tex]. Find an integer [tex]r \geq 0[/tex] and a torsion [tex]\mathbb{Z}[/tex]-module [tex]T[/tex] such that [tex]M \cong \mathbb{Z}^r \times T[/tex].