- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textit{ For the following groups,}$$(a)\quad \Bbb{Z}_6 \text{ the identity is } \color{red}{0}$
$(b)\quad |\Bbb{Z}_6|=\color{red}{6}$
$(c)\quad |0|=\color{red}{0}$
$(d)\quad |3| =\color{red}{|0,3|}$
$(e)\quad \text{the inverse of 2 is } \color{red}{4}$
$(f)\quad \text{the generator of this group is cyclic groups generated by } \color{red}{ 1}$
$(g)\quad \textit{Abelian/non-Abelian?} \quad \color{red}{Abelian}$
$(h)\quad Z_6 \text{ has $\color{red}{4 }$ subgroups.}$Sorta?
$(b)\quad |\Bbb{Z}_6|=\color{red}{6}$
$(c)\quad |0|=\color{red}{0}$
$(d)\quad |3| =\color{red}{|0,3|}$
$(e)\quad \text{the inverse of 2 is } \color{red}{4}$
$(f)\quad \text{the generator of this group is cyclic groups generated by } \color{red}{ 1}$
$(g)\quad \textit{Abelian/non-Abelian?} \quad \color{red}{Abelian}$
$(h)\quad Z_6 \text{ has $\color{red}{4 }$ subgroups.}$Sorta?
Last edited: