- #36
JesseM
Science Advisor
- 8,520
- 16
How is that a difficulty? If you know the movement of the point in the frame of the center, the Lorentz transformation will tell you the time of any event on that point's worldline in another frame. It's really just a problem of the equations being difficult or impossible to solve exactly. For example, if the point on the rim is described by x'(t') = cos(t') and y'(t') = sin(t') in the rest frame of the center, applying the Lorentz transformation would give the equations:kev said:The difficulty is that simultaneity of the points on the rim is continuously changing.
gamma*(x - vt) = cos(gamma*(t - vx/c^2))
y = sin(gamma*(t - vx/c^2)
The difficulty is just in solving the first equation for x (if you could do that, you could plug the answer into the second equation to get y(t)). There may not be an exact solution, I don't know. But if you're just interested in a visual depiction of the path, it's an easy enough matter to just pick a bunch of different t' coordinates, find the corresponding x' and y' coordinates for each one, then convert each (x', y', t') to an (x, y, t) using the Lorentz transform.