- #106
Rasalhague
- 1,387
- 2
starthaus said:How did you arrive to the final formula?
[tex]\begin{pmatrix}
\gamma & -\gamma \pmb{\beta}\\
-\gamma \pmb{\beta} & I+\frac{\gamma-1}{\beta^2} \pmb{\beta\beta}
\end{pmatrix}\begin{pmatrix}
t\\\textbf{r}\end{pmatrix}[/tex]
[tex]=\begin{pmatrix}
\gamma t - \gamma \pmb{\beta}\cdot \textbf{r}\\ -\gamma t \pmb{\beta}+\textbf{r}+\frac{\gamma-1}{\beta^2} (\textbf{r}\cdot \pmb{\beta})\pmb{\beta}
\end{pmatrix}[/tex]
And [itex]t' = 0[/itex]:
[tex]\gamma t - \gamma \pmb{\beta}\cdot \textbf{r}=0[/tex]
so
[tex]t = \pmb{\beta}\cdot \textbf{r}.[/tex]
Substituting for [itex]\pmb{\beta}\cdot \textbf{r}[/itex] for [itex]t[/itex] in the spatial part:
[tex]\textbf{r}'=-\gamma (\textbf{r}\cdot \pmb{\beta}) \pmb{\beta}+\textbf{r}+\frac{\gamma-1}{\beta^2} (\textbf{r}\cdot \pmb{\beta})\pmb{\beta}[/tex]
which simplifies like this:
[tex]\textbf{r}'=\textbf{r}+(\textbf{r}\cdot \pmb{\beta}) \pmb{\beta}\left ( \frac{\gamma-1}{\beta^2} -\frac{\gamma\beta^2}{\beta^2}\right )[/tex]
[tex]\textbf{r}'=\textbf{r}+\frac{(\textbf{r}\cdot \pmb{\beta}) \pmb{\beta}}{\beta^2}\left ( \gamma-1 -\gamma\beta^2 \right )[/tex]
[tex]\textbf{r}'=\textbf{r}-\frac{(\textbf{r}\cdot \pmb{\beta}) \pmb{\beta}}{\beta^2}\left ( -\gamma+1 +\gamma\beta^2 \right )[/tex]
[tex]\textbf{r}'=\textbf{r}-\frac{(\textbf{r}\cdot \pmb{\beta}) \pmb{\beta}}{\beta^2}\left ( 1-\gamma (1-\beta^2) \right )[/tex]
[tex]\textbf{r}'=\textbf{r}-\frac{(\textbf{r}\cdot \pmb{\beta}) \pmb{\beta}}{\beta^2}\left ( 1-\frac{1}{\gamma} \right )[/tex]
since
[tex]\gamma(1-\beta^2)=\frac{\gamma}{\gamma^2}.[/tex]