- #1
ZirkMan
- 136
- 0
I would like to better understand the nature of gravitational attraction and the law of conservation of energy.
Imagine you measure inertial mass (using inertial ballance) of an object far from a gravitating mass which is at rest relative to the object. Then you release the object and let it inertially fall towards the gravitating mass with no atmosphere. On the surface of the mass you stop the object so that not even an atom from it was lost during the fall. You measure its inertial mass again (with the inertial ballance again). Will it be the same as it was in space?
Imagine you measure inertial mass (using inertial ballance) of an object far from a gravitating mass which is at rest relative to the object. Then you release the object and let it inertially fall towards the gravitating mass with no atmosphere. On the surface of the mass you stop the object so that not even an atom from it was lost during the fall. You measure its inertial mass again (with the inertial ballance again). Will it be the same as it was in space?