- #1
- 413
- 47
A few friends have expressed an interest in exploring the geometry of symmetric spaces and Lie groups as they appear in several approaches to describing our universe. Rather than do this over email, I've decided to bring the discussion to PF, where we may draw from the combined wisdom of its denizens.
Whenever possible, I will be adding and referring to material on my related personal research wiki:
http://deferentialgeometry.org
The meta-idea is to have a linear discussion and development (kind of a mini-course) here on PF, while building up the wiki as a reference and personal research tool for this and other physics inquiries. This will provide background material and (hopefully) enforce a consistent mathematical notation for the discussion. I'm hoping this dual resource use will provide the best of both mediums.
The subjects I/we would like to cover in this thread include:
Lie algebra generators, T_A, (using su(2) as simplest nontrivial example)
(matrix representation, Clifford bivectors, or other Clifford elements)
structure coefficients, (maybe Lie algebra roots, weights, and classification)
exponentiation, g = exp(x^A T_A), giving Lie group elements (SU(2) example)
coordinate change, double covers (SU(2) vs SO(3))
symmetry: Killing vector fields related to generator action
local Lie group manifold geometry -- frame, connection, and curvature
symmetric spaces
Kaluza-Klein theory
appearance and incorporation of Higgs scalars
Peter-Weyl theorem and its use for calculating harmonics
And wherever else the discussion takes us. I'd like things to be (perhaps painfully) specific and pedantic -- relying on explicit examples. I'd like to mostly play with SU(2) and SU(3) as the simplest non-trivial and practical examples. What I'm after is to fully describe these groups as manifolds in terms of their local geometry, symmetries, global geometry, harmonics, etc. And show how they can be incorporated into Kaluza-Klein theory.
I'll usually ask questions at the end of posts. Sometimes I'll know the answer, and sometimes I won't. These will either serve as "homework" (I'll wait 'till someone (PF'ers welcome) answers correctly before proceeding) or as open questions hopefully leading to me learning stuff. (If you want to play, it will help if you have Mathematica or Maple available to use -- or it may be possible to do things the hard way.) I'll also happily answer questions (or meta-questions) related to the posts, probably with references to the wiki.
I'm not sure exactly where this will go or how it will evolve as a discussion, but I thought it would be fun to try here on PF. Now I need to add the first post to this zero-eth one...
Whenever possible, I will be adding and referring to material on my related personal research wiki:
http://deferentialgeometry.org
The meta-idea is to have a linear discussion and development (kind of a mini-course) here on PF, while building up the wiki as a reference and personal research tool for this and other physics inquiries. This will provide background material and (hopefully) enforce a consistent mathematical notation for the discussion. I'm hoping this dual resource use will provide the best of both mediums.
The subjects I/we would like to cover in this thread include:
Lie algebra generators, T_A, (using su(2) as simplest nontrivial example)
(matrix representation, Clifford bivectors, or other Clifford elements)
structure coefficients, (maybe Lie algebra roots, weights, and classification)
exponentiation, g = exp(x^A T_A), giving Lie group elements (SU(2) example)
coordinate change, double covers (SU(2) vs SO(3))
symmetry: Killing vector fields related to generator action
local Lie group manifold geometry -- frame, connection, and curvature
symmetric spaces
Kaluza-Klein theory
appearance and incorporation of Higgs scalars
Peter-Weyl theorem and its use for calculating harmonics
And wherever else the discussion takes us. I'd like things to be (perhaps painfully) specific and pedantic -- relying on explicit examples. I'd like to mostly play with SU(2) and SU(3) as the simplest non-trivial and practical examples. What I'm after is to fully describe these groups as manifolds in terms of their local geometry, symmetries, global geometry, harmonics, etc. And show how they can be incorporated into Kaluza-Klein theory.
I'll usually ask questions at the end of posts. Sometimes I'll know the answer, and sometimes I won't. These will either serve as "homework" (I'll wait 'till someone (PF'ers welcome) answers correctly before proceeding) or as open questions hopefully leading to me learning stuff. (If you want to play, it will help if you have Mathematica or Maple available to use -- or it may be possible to do things the hard way.) I'll also happily answer questions (or meta-questions) related to the posts, probably with references to the wiki.
I'm not sure exactly where this will go or how it will evolve as a discussion, but I thought it would be fun to try here on PF. Now I need to add the first post to this zero-eth one...