What is the Sum of Digits for 2^1000?

  • Thread starter Thread starter Krypton
  • Start date Start date
  • Tags Tags
    Sum Sum of digits
Click For Summary
The discussion centers on calculating the sum of the digits of 2^1000. A participant highlights a misunderstanding in approximating 2^1000 using logarithms, noting that 1000log(2) is not exactly 301 due to decimal places being ignored. The correct approach involves recognizing that the sum of the digits cannot be derived from the logarithmic approximation alone. For those seeking the single digit reduced sum, working modulo 9 yields an answer of 7. The conversation emphasizes the importance of precise calculations in determining the sum of digits.
Krypton
Messages
13
Reaction score
0
What is the sum of the digits of 2^1000
check my algoriathm, let y=2^1000 then logy = 1000log2 = 301 and y=10^logy=10^301
since (1,0) r da only digits of 10^n 4all n=1,2,3,4,... The sum of digits equals 1 , but it is not the answer ...Why?
 
Mathematics news on Phys.org
Well you seem to want 2^1000 to be equal to 10^301 which is clearly false since 5 divides the latter but not the former. The issue is that 1000log2 is not exactly equal to 301, you probably left off the decimal places which is the cause of your problem when you equate 10^logy to 2^1000.
 
That 301 is just the number of zeros, since log(2) = .301029996...you are attempting to approximate its value using 1000log(2) = 301.

However the problem can be worked out by looking at the series, 2, 4, 8, 16=7, 32=5, etc.
 
Hay i am not using a computer to calculate it that way. I need some techiques could u pleasezzzz...Z
 
Do you want the actual sum of all the digits in 2^1000 or do you just want the single digit reduced sum (the single digit eventually obtained from repeated summing of digits).

If its the single digit reduced sum that you want then just work modulo 9 to get the answer (which is 7 btw).
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K