- #1
glocki35
- 11
- 0
Hi All,
I have a problem i am trying to figure out, if an object (scale drawing in attachment) is traveling at a constant velocity of 2.16 m/s, with a mass of 496 Kgs, what is the potential energy required to 'tip' this object over?
Kinetic energy = 1/2 Mass x Velocity^2=1/2x496x2.16^2 which = 1157.07 Joules, all good, however;
Potential Energy= Mass x (sqrts^2+a^2-s)=496x(sqrt6.09^2+0.79^2)-6.09 = 496 x (6.14-6.09) which =25.3 Joules
which means, at this velocity this object will tip if it strikes an object on the ground.
Does this seem correct?
Also, how can i calculate the force required to tip this object over?
I have put scale drawing in as an attachment to help.
I am confused and at a complete standstill.
Any help is greatly appareciated.
I have a problem i am trying to figure out, if an object (scale drawing in attachment) is traveling at a constant velocity of 2.16 m/s, with a mass of 496 Kgs, what is the potential energy required to 'tip' this object over?
Kinetic energy = 1/2 Mass x Velocity^2=1/2x496x2.16^2 which = 1157.07 Joules, all good, however;
Potential Energy= Mass x (sqrts^2+a^2-s)=496x(sqrt6.09^2+0.79^2)-6.09 = 496 x (6.14-6.09) which =25.3 Joules
which means, at this velocity this object will tip if it strikes an object on the ground.
Does this seem correct?
Also, how can i calculate the force required to tip this object over?
I have put scale drawing in as an attachment to help.
I am confused and at a complete standstill.
Any help is greatly appareciated.