- #1
Andre
- 4,311
- 74
In some threads in the past I hinted vaguely that one feedback mechanism in climate is not really mentioned extensively, that's the latent heat energy transport, from evaporation at the Earth surface to condensation in the higher levels, forming clouds and altering the dynamic radiation balance, especially as feedback on changing radiation and heat budget, for instance with changing concentrations of radiative gasses. (or more bluntly global warming).
The only thing I encounter is the assumption that relative humidity remains more or less constant as the Earth warms due to the increase of greenhouse gasses, causing a dominant positive feedback effect of more greenhouse effect of the extra water vapor.
But the main question here is, as asked several times before, how much energy is required to evaporate that excess water to keep relative humidity constant under constant temperatures? And indirectly, how does that relate to the increased energy available due to increased greenhouse effect?
It has been suggested that in a closed box construction that would not need to be much, however the atmosphere is full of conveyor belts (convection, advection), transporting energy (heat and latent energy) from the Earth surface to higher levels, (as said) changing the radiation balance.
So let's try some numbers to quantify this. Of course, there is no way to model this and come up with three digits behind the decimal, but we could do some back of the envellope calculations to get an idea of the order of magnitude. This would give an idea if it can be ignored in the modelling of the atmosphere (as seems to be the case right now, if I have understood it correctly) or if it's a factor of importance of the feedbacks in total.
So how much evaporation is going on in the first place?
That will be in the next post
The only thing I encounter is the assumption that relative humidity remains more or less constant as the Earth warms due to the increase of greenhouse gasses, causing a dominant positive feedback effect of more greenhouse effect of the extra water vapor.
But the main question here is, as asked several times before, how much energy is required to evaporate that excess water to keep relative humidity constant under constant temperatures? And indirectly, how does that relate to the increased energy available due to increased greenhouse effect?
It has been suggested that in a closed box construction that would not need to be much, however the atmosphere is full of conveyor belts (convection, advection), transporting energy (heat and latent energy) from the Earth surface to higher levels, (as said) changing the radiation balance.
So let's try some numbers to quantify this. Of course, there is no way to model this and come up with three digits behind the decimal, but we could do some back of the envellope calculations to get an idea of the order of magnitude. This would give an idea if it can be ignored in the modelling of the atmosphere (as seems to be the case right now, if I have understood it correctly) or if it's a factor of importance of the feedbacks in total.
So how much evaporation is going on in the first place?
That will be in the next post
Last edited: