- #1
Nick20
- 5
- 0
I had a physics test at school recently. One of the questions was based on the equivalence principle, going something like this: Two clocks in a spaceship that is accelerating. One at the bottom and one at the top of the space ship. Now think that the spaceship is so far away from any object in space, that it is not affected by any gravitational force.
It is my understanding that according to the equivalence principle, one can not be able to do any test that suggests that you are no longer in a gravitational field, but in an accelerated system. And according to the theory of relativity, the clock furthest down in the gravitational field will go slower than any clock higher up. Yet it makes no sense to me that the same rules would apply in an accelerated system. The correct answer supposedly is that the clock at the bottom of the ship will slow down. What am I missing? Would the clock at the bottom of the ship really slow down? Making the rules of time dilation apply in an accelerated system, the same way it does in an gravitational field?
It is my understanding that according to the equivalence principle, one can not be able to do any test that suggests that you are no longer in a gravitational field, but in an accelerated system. And according to the theory of relativity, the clock furthest down in the gravitational field will go slower than any clock higher up. Yet it makes no sense to me that the same rules would apply in an accelerated system. The correct answer supposedly is that the clock at the bottom of the ship will slow down. What am I missing? Would the clock at the bottom of the ship really slow down? Making the rules of time dilation apply in an accelerated system, the same way it does in an gravitational field?