- #1
- 8,943
- 2,949
I recommend the following paper by Robert B. Griffiths on developing the theory of quantum mechanics without giving a special role to measurements:
http://arxiv.org/pdf/quant-ph/0612065v1.pdf
In my opinion, it does not answer all the questions about locality and realism that come up in discussions about interpretations of quantum mechanics. But what I like about it is that it removes the special role that measurement plays in some formulations of quantum mechanics, and eliminates the need for wave function collapse.
Why was I specifically Googling for a formulation of quantum mechanics without measurements? Measurement is fundamental to some ways of presenting quantum mechanics. There is the "collapse interpretion" (which I think is due to Von Neumann) in which systems evolve deterministically according to Schrodinger's equation between measurements, but then the act of measurement causes a discontinuous, nondeterministic "collapse" of the wavefunction into an eigenstate of whatever observable was being measured. There are other interpretations that don't introduce collapse, but do make measurements the fundamental ingredient in the interpretation of quantum mechanics. For example, in the paper by Lucien Hardy
http://arxiv.org/pdf/quant-ph/0101012v4.pdf
Some people think that such an emphasis on measurement is appropriate, since physics is an empirical science, and empirical science is founded on measurements, experiments, observations, etc. However, I find it very unsatisfactory for measurement to play a key role in the formulation a of fundamental theory because measurements are not fundamental. A measuring device is, after all, a physical object, presumably governed by the same physical laws that govern atoms and molecules and light and gravity. What makes a particular physical object suitable to be considered a "measuring device" is pretty complicated:
My objection to using measurements as primitive terms in formulations of quantum mechanics is that measurements are anything but primitive. You have to use physics to design objects that can act as measuring devices, but the measuring devices have to already exist before you can give any interpretation to the physics. This is circular. Of course, it's not really that bad, because of the fact that we know that classical physics works approximately for macroscopic objects. So we can use classical physics to design a "first cut" at measuring devices, and then use the knowledge of quantum mechanics that we get from those devices to make improved devices, and so bootstrap our way to a self-consistent notion of physics and measuring devices.
But it seems very messy. What I would prefer is a formulation of quantum mechanics that is about what happens in the world of particles and fields, and then use that theory to derive what makes a good measurement device in a noncircular way. I think that's the approach that Griffiths takes.
http://arxiv.org/pdf/quant-ph/0612065v1.pdf
In my opinion, it does not answer all the questions about locality and realism that come up in discussions about interpretations of quantum mechanics. But what I like about it is that it removes the special role that measurement plays in some formulations of quantum mechanics, and eliminates the need for wave function collapse.
Why was I specifically Googling for a formulation of quantum mechanics without measurements? Measurement is fundamental to some ways of presenting quantum mechanics. There is the "collapse interpretion" (which I think is due to Von Neumann) in which systems evolve deterministically according to Schrodinger's equation between measurements, but then the act of measurement causes a discontinuous, nondeterministic "collapse" of the wavefunction into an eigenstate of whatever observable was being measured. There are other interpretations that don't introduce collapse, but do make measurements the fundamental ingredient in the interpretation of quantum mechanics. For example, in the paper by Lucien Hardy
http://arxiv.org/pdf/quant-ph/0101012v4.pdf
The state associated with a particular preparation is defined to be (that thing represented by) any mathematical object that can be used to determine the probability associated with the outcomes of any measurement that may be performed on a system prepared by the given preparation.
Some people think that such an emphasis on measurement is appropriate, since physics is an empirical science, and empirical science is founded on measurements, experiments, observations, etc. However, I find it very unsatisfactory for measurement to play a key role in the formulation a of fundamental theory because measurements are not fundamental. A measuring device is, after all, a physical object, presumably governed by the same physical laws that govern atoms and molecules and light and gravity. What makes a particular physical object suitable to be considered a "measuring device" is pretty complicated:
- There must be an interaction between the system being measured and states of the measuring device.
- The measuring device must act as an "amplifier", so that microscopic properties of the system being measured can trigger macroscopic changes in the state of the device.
- The measuring device must have states that are sufficiently "orderly" to interpret easily. Either, there must be a number of discrete states in the measuring device that are observably different, or else there must be a continuous sets of states that can readily be interpreted as a linear scale.
- The act of measurement should result in a "record", an irreversible change that can be reliably checked later.
My objection to using measurements as primitive terms in formulations of quantum mechanics is that measurements are anything but primitive. You have to use physics to design objects that can act as measuring devices, but the measuring devices have to already exist before you can give any interpretation to the physics. This is circular. Of course, it's not really that bad, because of the fact that we know that classical physics works approximately for macroscopic objects. So we can use classical physics to design a "first cut" at measuring devices, and then use the knowledge of quantum mechanics that we get from those devices to make improved devices, and so bootstrap our way to a self-consistent notion of physics and measuring devices.
But it seems very messy. What I would prefer is a formulation of quantum mechanics that is about what happens in the world of particles and fields, and then use that theory to derive what makes a good measurement device in a noncircular way. I think that's the approach that Griffiths takes.