Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Berry phase
Recent contents
View information
Top users
Description
In classical and quantum mechanics, geometric phase is a phase difference acquired over the course of a cycle, when a system is subjected to cyclic adiabatic processes, which results from the geometrical properties of the parameter space of the Hamiltonian. The phenomenon was independently discovered by T. Kato (1950), S. Pancharatnam (1956), and by H. C. Longuet-Higgins (1958) and later generalized by Sir Michael Berry (1984).
It is also known as the Pancharatnam–Berry phase, Pancharatnam phase, or Berry phase.
It can be seen in the conical intersection of potential energy surfaces and in the Aharonov–Bohm effect. Geometric phase around the conical intersection involving the ground electronic state of the C6H3F3+ molecular ion is discussed on pages 385-386 of the textbook by Bunker and Jensen.In the case of the Aharonov–Bohm effect, the adiabatic parameter is the magnetic field enclosed by two interference paths, and it is cyclic in the sense that these two paths form a loop. In the case of the conical intersection, the adiabatic parameters are the molecular coordinates. Apart from quantum mechanics, it arises in a variety of other wave systems, such as classical optics. As a rule of thumb, it can occur whenever there are at least two parameters characterizing a wave in the vicinity of some sort of singularity or hole in the topology; two parameters are required because either the set of nonsingular states will not be simply connected, or there will be nonzero holonomy.
Waves are characterized by amplitude and phase, and may vary as a function of those parameters. The geometric phase occurs when both parameters are changed simultaneously but very slowly (adiabatically), and eventually brought back to the initial configuration. In quantum mechanics, this could involve rotations but also translations of particles, which are apparently undone at the end. One might expect that the waves in the system return to the initial state, as characterized by the amplitudes and phases (and accounting for the passage of time). However, if the parameter excursions correspond to a loop instead of a self-retracing back-and-forth variation, then it is possible that the initial and final states differ in their phases. This phase difference is the geometric phase, and its occurrence typically indicates that the system's parameter dependence is singular (its state is undefined) for some combination of parameters.
To measure the geometric phase in a wave system, an interference experiment is required. The Foucault pendulum is an example from classical mechanics that is sometimes used to illustrate the geometric phase. This mechanics analogue of the geometric phase is known as the Hannay angle.
View More On Wikipedia.org
Forums
Back
Top