Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Brown dwarf
Recent contents
View information
Top users
Description
Brown dwarfs are substellar objects which are not massive enough to sustain nuclear fusion of ordinary hydrogen (1H) into helium in their cores, unlike main sequence stars. They have a mass between the most massive gas giant planets and the least massive stars, approximately 13 to 80 times that of Jupiter (MJ). However, they are able to fuse deuterium (2H), and the most massive (> 65 MJ) are able to fuse lithium (7Li).Astronomers classify self-luminous objects by spectral class, a distinction intimately tied to the surface temperature, and brown dwarfs occupy types M, L, T, and Y. As brown dwarfs do not undergo stable hydrogen fusion they cool down over time, progressively passing through later spectral types as they age.
Despite their name, to the naked eye brown dwarfs would appear different colors depending on their temperature. The warmest are possibly orange or red, while cooler brown dwarfs would likely appear magenta to the human eye. Brown dwarfs may be fully convective, with no layers or chemical differentiation by depth.Though originally theorized in the 1960s to exist, it was not until the mid-1990s that the first unambiguous brown dwarfs were discovered. As brown dwarfs have relatively low surface temperatures they are not very bright at visible wavelengths, emitting the majority of their light in the infrared. With the advent of more capable infrared detecting devices thousands of brown dwarfs have been identified. The nearest known brown dwarfs are located in the Luhman 16 system, a binary of L and T type brown dwarfs at a distance of about 6.5 light years. Luhman 16 is the third closest system to the Sun after Alpha Centauri and Barnard's Star.
View More On Wikipedia.org
Forums
Back
Top