Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Canonical transformation
Recent contents
View information
Top users
Description
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q, p, t) → (Q, P, t) that preserves the form of Hamilton's equations. This is sometimes known as form invariance. It need not preserve the form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations (a useful method for calculating conserved quantities) and Liouville's theorem (itself the basis for classical statistical mechanics).
Since Lagrangian mechanics is based on generalized coordinates, transformations of the coordinates q → Q do not affect the form of Lagrange's equations and, hence, do not affect the form of Hamilton's equations if we simultaneously change the momentum by a Legendre transformation into
P
i
=
∂
L
∂
Q
˙
i
.
{\displaystyle P_{i}={\frac {\partial L}{\partial {\dot {Q}}_{i}}}.}
Therefore, coordinate transformations (also called point transformations) are a type of canonical transformation. However, the class of canonical transformations is much broader, since the old generalized coordinates, momenta and even time may be combined to form the new generalized coordinates and momenta. Canonical transformations that do not include the time explicitly are called restricted canonical transformations (many textbooks consider only this type).
For clarity, we restrict the presentation here to calculus and classical mechanics. Readers familiar with more advanced mathematics such as cotangent bundles, exterior derivatives and symplectic manifolds should read the related symplectomorphism article. (Canonical transformations are a special case of a symplectomorphism.) However, a brief introduction to the modern mathematical description is included at the end of this article.
View More On Wikipedia.org
Forums
Back
Top