Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Cauchy sequences
Recent contents
View information
Top users
Description
In mathematics, a Cauchy sequence (French pronunciation: [koʃi]; English: KOH-shee), named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite number of elements of the sequence are less than that given distance from each other.
It is not sufficient for each term to become arbitrarily close to the preceding term. For instance, in the sequence of square roots of natural numbers:
a
n
=
n
,
{\displaystyle a_{n}={\sqrt {n}},}
the consecutive terms become arbitrarily close to each other:
a
n
+
1
−
a
n
=
n
+
1
−
n
=
1
n
+
1
+
n
<
1
2
n
.
{\displaystyle a_{n+1}-a_{n}={\sqrt {n+1}}-{\sqrt {n}}={\frac {1}{{\sqrt {n+1}}+{\sqrt {n}}}}<{\frac {1}{2{\sqrt {n}}}}.}
However, with growing values of the index n, the terms an become arbitrarily large. So, for any index n and distance d, there exists an index m big enough such that am – an > d. (Actually, any m > (√n + d)2 suffices.) As a result, despite how far one goes, the remaining terms of the sequence never get close to each other, hence the sequence is not Cauchy.
The utility of Cauchy sequences lies in the fact that in a complete metric space (one where all such sequences are known to converge to a limit), the criterion for convergence depends only on the terms of the sequence itself, as opposed to the definition of convergence, which uses the limit value as well as the terms. This is often exploited in algorithms, both theoretical and applied, where an iterative process can be shown relatively easily to produce a Cauchy sequence, consisting of the iterates, thus fulfilling a logical condition, such as termination.
Generalizations of Cauchy sequences in more abstract uniform spaces exist in the form of Cauchy filters and Cauchy nets.
View More On Wikipedia.org
Forums
Back
Top