Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Characteristic equation
Recent contents
View information
Top users
Description
In mathematics, the characteristic equation (or auxiliary equation) is an algebraic equation of degree n upon which depends the solution of a given nth-order differential equation or difference equation. The characteristic equation can only be formed when the differential or difference equation is linear and homogeneous, and has constant coefficients. Such a differential equation, with y as the dependent variable, superscript (n) denoting nth-derivative, and an, an − 1, ..., a1, a0 as constants,
a
n
y
(
n
)
+
a
n
−
1
y
(
n
−
1
)
+
⋯
+
a
1
y
′
+
a
0
y
=
0
,
{\displaystyle a_{n}y^{(n)}+a_{n-1}y^{(n-1)}+\cdots +a_{1}y'+a_{0}y=0,}
will have a characteristic equation of the form
a
n
r
n
+
a
n
−
1
r
n
−
1
+
⋯
+
a
1
r
+
a
0
=
0
{\displaystyle a_{n}r^{n}+a_{n-1}r^{n-1}+\cdots +a_{1}r+a_{0}=0}
whose solutions r1, r2, ..., rn are the roots from which the general solution can be formed. Analogously, a linear difference equation of the form
y
t
+
n
=
b
1
y
t
+
n
−
1
+
⋯
+
b
n
y
t
{\displaystyle y_{t+n}=b_{1}y_{t+n-1}+\cdots +b_{n}y_{t}}
has characteristic equation
r
n
−
b
1
r
n
−
1
−
⋯
−
b
n
=
0
,
{\displaystyle r^{n}-b_{1}r^{n-1}-\cdots -b_{n}=0,}
discussed in more detail at Linear difference equation#Solution of homogeneous case.
The characteristic roots (roots of the characteristic equation) also provide qualitative information about the behavior of the variable whose evolution is described by the dynamic equation. For a differential equation parameterized on time, the variable's evolution is stable if and only if the real part of each root is negative. For difference equations, there is stability if and only if the modulus (absolute value) of each root is less than 1. For both types of equation, persistent fluctuations occur if there is at least one pair of complex roots.
The method of integrating linear ordinary differential equations with constant coefficients was discovered by Leonhard Euler, who found that the solutions depended on an algebraic 'characteristic' equation. The qualities of the Euler's characteristic equation were later considered in greater detail by French mathematicians Augustin-Louis Cauchy and Gaspard Monge.
View More On Wikipedia.org
Forums
Back
Top