Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Characteristic
Recent contents
View information
Top users
Description
In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero.
That is, char(R) is the smallest positive number n such that
1
+
⋯
+
1
⏟
n
summands
=
0
{\displaystyle \underbrace {1+\cdots +1} _{n{\text{ summands}}}=0}
if such a number n exists, and 0 otherwise.
The special definition of the characteristic zero is motivated by the equivalent definitions given in § Other equivalent characterizations, where the characteristic zero is not required to be considered separately.
The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive n such that
a
+
⋯
+
a
⏟
n
summands
=
0
{\displaystyle \underbrace {a+\cdots +a} _{n{\text{ summands}}}=0}
for every element a of the ring (again, if n exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity: mandatory vs. optional), and this definition is suitable for that convention; otherwise the two definitions are equivalent due to the distributive law in rings.
View More On Wikipedia.org
Forums
Back
Top