Commutator Definition and 274 Threads

  1. S

    Evaluating Commutator [x, p^2]: Need Help!

    i've been trying to evaluate this commutator the 'easy' way--that is, without using the definition of the momentum operator. the farthest i got was trying to use this rule.. [A, BC] = [A, B]C + B[A, C] so.. [x, p^2] = [x, p]p + p[x, p] so i guess i get 2ihp. but that doesn't make...
  2. A

    Quantum Physics, find the commutator

    This should be easy, since I'm sure I've misunderstood something here. The task is to find the commutator of the x- and y-components of the angular momentum operator. This operator is, according to physics handbook: -i \hbar \bold r \times \nabla I rewrote this as: i \hbar \nabla \times \bold...
  3. T

    Commutator relations for the Ehrenfest Theorem

    Hi there,... For a derivation of the Ehrenfestequations i found the following commutator relations for the Hamilton-Operator in a book: H = \frac{p_{op}^2}{2m} + V(r,t) and the momentum-operator p_{op} = - i \hbar \nabla respectively the position-operator r in position space: [H,p_{op}]...
  4. B

    Spatial representation of field commutator

    Hi all! I worked for hours on this simple commutator of real scalar fields in qft: \left[\Phi\left(x\right),\Phi\left(y\right) \right] = i\Delta\left( x-y \right) where \Delta\left(x\right) = \frac{1}{i}\int {\frac{{d^4 p}} {{\left( {2\pi } \right)^3 }}\delta \left( {p^2 - m^2 }...
  5. E

    Do the Hamiltonian and Angular Momentum Commute in Spherical Coordinates?

    Do the Hamiltonian (H) and the z-component of angular momentum (L_z) commute? [H, L_z]=0 H = [(-(hbar)^2/2m) dell^2] + V(r, theta, phi) where dell is the gradient, and V is the potential L_z = -i(hbar)(d/d phi) where d is actually a partial derivative I know how to find a...
  6. Peeter

    Doran/Lasenby. Commutator and symmetric products?

    Geometric Algebra for Physicists, in equation (4.56) introduces the following notation A * B = \langle AB \rangle as well as (4.57) the commutator product: A \times B = \frac{1}{2}\left(AB - BA\right) I can see the value defining the commutator product since this selects all...
  7. N

    Math Help: Commutator & Relation [f(\hat{A}),\hat{B}]

    Does the relation [f(\hat{A}),\hat{B}] = df(\hat{A})/d\hat{A} follow when A commutes with [A,B]? or is this only valid when [A,B]=1?
  8. E

    Commutator subgroup and center

    Homework Statement Please confirm that the center of a group always contains the commutator subgroup. I am pretty sure its true. Homework Equations The Attempt at a Solution
  9. O

    Commutator with r, p_r and angular momentum

    Hi, guys..This is my first time to post. and I got to aplogize for my bad English..I`m a novice..;; anyway..here`s my curiosity.. From Paul Dirac`s Principles of Quantum Mechanics..p.153 (section of Motion in a central field of force) It says that The angular momentum L of the ptl...
  10. K

    Time ordered product vs. commutator in path integral

    Suppose I want to bypass the entire Hamiltonian formulation of quantum field theory and define the theory using a path integral. Thus all I can calculate are Green's function which are time ordered products of local operators. Given only these (no expansions of the field in creation...
  11. F

    Can anyone help? in quantum mechanics commutator prove [L^x,L^y] = ihL^z

    can anyone help?? in quantum mechanics commutator prove [L^x,L^y] = ihL^z given :L^x =(y^(pz)^-z^(py)^) :L^y =(z^(px)^-x^(pz)^) :L^z =(x^(py)^-y^(px)^) where ^ is just showing its operator prove comutator [L^x,L^y] = ihL^z I am swamped at every hurdle and can't seem to get my...
  12. S

    How do I compute the commutator [L,p]?

    How do i compute the commutator [L,p]?
  13. A

    Commutator Relations: [x,p]=ih, Proof of p=-iħ∂/∂x+f(x)

    given that [x,p]=ih, show that if x=x, p has the representation p=-iħ∂/∂x+f(x) where f(x) is an arbitrary function of x
  14. quasar987

    Maths: Proving ABC=CBA Implies [A,B]=[A,C]=[B,C]=0

    Is it true that ABC = CBA implies [A,B]=[A,C]=[B,C]=0 ?? The converse is of course true, and I cannot find a counter-exemple (ex: no 2 of the above commutation relation above are sufficient), but how is this proven?? :confused:
  15. E

    Commutator of a density matrix and a real symmetric matix

    Let p1,p2 be two density matrices and M be a real, symmetric matrix. Now, <<p1|[M,p2]>>= <<p1|M*p2>>-<<p1|p2*M>>= Tr{p1*M*p2}-Tr{p1*p2*M}= 2i*Tr{(Im(p1|M*p2))}. Why is it that this works out as simply as (x+iy)-(x-iy)? How is Tr{p1*p2*m}=conjugate(Tr{p1*M*p2})? I can't seem to figure...
  16. K

    Proving the Commutator w/Taylor Expansion: Rick's Problem

    Question: If g(p) can be Taylor expanded in polynomials, then prove that: \left[x, g\left(p\right)\right] = i\hbar \frac{dg}{dp} To start, I multiply the wave function \Psi and expand the commutator: \left( xg\left(p\right)-g\left(p\right)x \right)\Psi then expand g(p) using...
  17. Oxymoron

    Exploring Free Groups: Commutator Subgroups & Index

    The only definition of a free group I have is this: If F is a free group then it must have a subgroup in which every element of F can be written in a unique way as a product of finitely many elements of S and their inverses. Now, is it possible to form a commutator subgroup of F? That is...
  18. M

    Pauli Matrices: Troubleshooting a Non-Zero Commutator

    Ok, I have a stupid question on pauli matrices here but it is bugging me. In a book I'm reading it gives the equation [\sigma_i , \sigma_j] = 2 I \epsilon_{i,j,k} \sigma_k , I understand how it works and everything but I do have a question, when you have k=i/j and i!=j (like 2,1,2) you get a...
  19. Oxymoron

    Calculating the Commutator of R_1,R_2 in Coordinates

    Could someone check if I have done this right. R_1 = x^2\partial_3 - x^3\partial_2 R_2 = x^3\partial_1 - x^1\partial_3 R_3 = x^1\partial_2 - x^2\partial_1 Where x^i are coordinates. I need to calculate the commutator [R_1,R_2]. [R_1,R_2] = x^2\partial_3x^3\partial_1 -...
  20. S

    Where Did I Go Wrong? Troubleshooting a Commutator Relation

    Hi, I've got a commutator relation I'm trying to figure out here. I don't know what I'm doing wrong, but I don't seem to be able to get it right, so hopefully someone can help me through it. Anyway, here's the problem. We're given the Dirac Hamiltonian H_D = \alpha_j p_j + \beta m, where p_j...
  21. G

    Commutator of hermitian operators

    i searched the forum, but nothing came up. My question, how do you prove that [A,B] = iC if A and B are hermitian operators? I understand how C is hermitian as well, but i can't figure out how to prove the equation.
  22. J

    Evaluating Commutator for Operators on f(x)

    I'm having difficulty trying to figure out which of the following is the correct method to properly evaluate the effect of the operators on f(x). Given that, \hat{A}f(x)=<x|\hat{A}|f> If the polarity operator, \hat{U_p}, and the translation operator, \hat{U_t}(a), act as...
  23. A

    What is the significance of the commutator in quantum mechanics?

    The commutator plays a central roll in quantum mechanics. I guess it is hard to study any aspect of quantum mechanics without running into a commutator. I understand you can accept the fact that commutators of compatible measurables equal zero, while those of incompatible measurements equal...
  24. M

    Demonstrating [L,H] Commutes with V Dependent on r Only

    I'm trying to demonstrate that angular momentum and the Hamiltonian commute provided that V is a function of radius r only. Using L = Lx + Ly + Lz components, the definition of Lx = yPz - zPy, etc, the commutator definition and the fact that H = p^2/2m + V. I can reduce [Lx,H] to the...
Back
Top