Conditional probability

In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B), or sometimes PB(A) or P(A/B). For example, the probability that any given person has a cough on any given day may be only 5%. But if we know or assume that the person is sick, then they are much more likely to be coughing. For example, the conditional probability that someone unwell is coughing might be 75%, in which case we would have that P(Cough) = 5% and P(Cough|Sick) = 75%.
Conditional probability is one of the most important and fundamental concepts in probability theory. But conditional probabilities can be quite slippery and might require careful interpretation. For example, there need not be a causal relationship between A and B, and they don't have to occur simultaneously.
P(A|B) may or may not be equal to P(A) (the unconditional probability of A). If P(A|B) = P(A), then events A and B are said to be independent: in such a case, knowledge about either event does not alter the likelihood of each other. P(A|B) (the conditional probability of A given B) typically differs from P(B|A). For example, if a person has dengue, they might have a 90% chance of testing positive for dengue. In this case, what is being measured is that if event B ("having dengue") has occurred, the probability of A (test is positive) given that B (having dengue) occurred is 90%: that is, P(A|B) = 90%. Alternatively, if a person tests positive for dengue, they may have only a 15% chance of actually having this rare disease, because the false positive rate for the test may be high. In this case, what is being measured is the probability of the event B (having dengue) given that the event A (test is positive) has occurred: P(B|A) = 15%. Falsely equating the two probabilities can lead to various errors of reasoning such as the base rate fallacy. Conditional probabilities can be reversed using Bayes' theorem.
Conditional probabilities can be displayed in a conditional probability table.

View More On Wikipedia.org
Back
Top