Homework Statement
Two identical particles of mass m travel towards each other at speed v; they combine and form a single new particle. By employing conservation of momentum and conservation of energy, what is the mass of this new particle in
Homework Equations
Relativistic momentum and total...
ηϖ1. Homework Statement
Homework Equations
I=½MR2
PE=mgh
The Attempt at a Solution
The first thing that jumped out at me was "uniform cylinder" so I went ahead and calculated the moment of inertia for the cylinder and got I=½(4.4)(.4)2 = .352 and held onto that.
Then, I calculated the...
Homework Statement
A very Slippery ice cube slides in a vertical plane around the inside of a smooth, 20 cm diameter horizontal pipe. The ice cube's speed at the bottom of the circle is 3.0 m/s
Vi = 3.0 m/s
Height at top= 2(.20) = .40
Vf = ?
Homework Equations
KE(initial) + PE(initial) =...
Homework Statement
A 28-kg rock approaches the foot of a hill with a speed of 15 m/s. This hill slopes upward at a constant angle of 40.0∘ above the horizontal. The coefficients of static and kinetic friction between the hill and the rock are 0.75 and 0.20, respectively.
a)Use energy...
If we have come to realize that energy conservation is not the most general conservation law in our spacetime, isn't it odd that we don't have a simple name for the "real deal"?
I bumped into this thought through Noether's theorem, which relates symmetries in fields to conservation of all kinds...
Why do conservative forces conserve mechanical energy while non conservative forces do not?
According to me,
What makes the conservative forces path independent is that for a particular case they always act in a fixed direction irrespective of the direction of motion of the object on which they...
Homework Statement
I am studying for an upcoming exam and stumbled upon a website with a bunch of practice problems. I would typically state the question but this one is so long and requires a picture so here is the hyperlink to it: http://web.mit.edu/2.25/www/5_10/5_10.html
Homework Equations...
Hi Folks,
How would one use the conservation of angular momentum to explain the attached picture?
The rod is held fixed horizontally..the person holds on to the cork and then let's go...apparently the glass is saved due to this conservation...
When we use the conservation of momentum with, for example, collisions do we include the sign with the velocities or are the signs inherent in the quantity? For examples, would we write ##m_1v_1 = m_1v_1 + m_2v_2## or ##m_1v_1 = -m_1v_1 + m_2v_2## for a collision where a moving object hits a...
When reading lessons on the conservation of momentum, you usually see examples with colliding balls or something to that effect. These examples always seem to fail to mention friction. These balls will always come to a stop due to friction. How is momentum conserved when it is lost to friction...
Homework Statement
A uniform rod of length L and mass M hangs at rest from a frictionless pivot. The rod is hit a distance 0.8L below the pivot by a particle of mass m moving perpendicularly to the rod at speed v; the particle sticks to the rod. Following the collision, the maximum angle...
Homework Statement
A ball of mass m falls from height hi to height hf near the surface of the Earth. When the ball passes hf, it has a speed of vf. Ignore air resistance. Consider the system T which consists of the ball only.
Write an expression for each of the following quantities in terms of...
Homework Statement
A mass is suspended from a crane by a cable of length L. The crane and the mass is moving at constant speed V. The crane stops and the mass on the cable swings out.
What is the angle that the mass swings?
If the angle is 50 degrees and L=6m, what is the initial speed of the...
Homework Statement
There is a collection of different force fields, for example:
$$F_{x}=ln z$$
$$F_{y}=-ze^{-y}$$
$$F_{z}=e^{-y}+\frac{x}{z}$$
We are supposed to indicate whether they are conservative and find the potential energy function.
Homework Equations
See Above
The Attempt at a...
Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.0×104 m/s when at a distance of 2.6×1011 m from the center of the sun, what is its speed when at a distance of 5.2×1010 m .
Express your answer using two significant figures
I applied...
Consider a 4 current
J^\mu and a metric g then conservation laws will require \del_\mu J^\mu = 0
my lecturer gave me a brief problem and I think I'm missing some understanding of it
he writes
What I'm not understanding is, where he states, if we choose B to be the time slice between etc...
Homework Statement
Homework Equations
Conservative of energy
mg(y2-y1) +1/2 k (s2-s02) = 1/2 mv12 +1/2 mv22
The Attempt at a Solution
v1 = 0 at rest
y2 = 0 bottom
What I got is v2 = 8.20 m/s but not correct,
I don't know how I can take into account the tension..
Fspring = -ks = -4000 N/m *...
Let's say I have a spherically-uniform black-body radiator. It is losing energy, and therefore some of its mass, at a particular rate. From the frame of reference of the radiator, it has no momentum, but it has a changing amount of energy. From its frame of reference, the pressure on the...
Homework Statement
Consider a uniform rod of mass 12kg and length 1.0m. At it's end the rod is attached to a fixed, friction free pivot. Initially the rod is balanced vertically above the pivot and begins to fall (from rest) as shown in the diagram. Determine,
a) the angular acceleration of...
Hi.
In the (mainstream) books of electrodynamics I know, the electric and magnetic fields are introduced as force fields normalized to a charged test particle of 1 C. This makes those fields appear as an unnecessary, but convenient mathematical tool. They cannot be measured in the absence of...
Consider a charged particle moving with velocity v, having the energy 1/2 m v^2. Now we deccelerate the particle very quickly; so quickly that the radiated energy is greater than the kinetic energy (it can be arbitrarily large). Note also that energy obtained from decceleration is positive...
My textbook talks about the average angular speed that ω = angular displacement / time for the angular displacement to take place.
So the question is like there is m1v1 = m2v2, can the velocity be instead average angular speed to have the conservation of momentum equation like this?
m1ω1 = m2ω2
Homework Statement
Prove that the Noether charge ##Q=\frac{i}{2}\int\ d^{3}x\ (\phi^{*}\pi^{*}-\phi\pi)## for a complex scalar field (governed by the Klein-Gordon action) is a constant in time.
Homework Equations
##\pi=\dot{\phi}^{*}##
The Attempt at a Solution...
Let's have waves with their carried power proportional to the square of their amplitude(s).
The waves obey the principle of superposition.
Before superposition, we can calculate the power output based on the amplitudes.
After superposition, there will be new values for the amplitudes, but the...
In Woodhouse's 'General Relativity' he finds an expression for the energy-momentum tensor of an isotropic fluid. If W^a is the rest-velocity of the fluid and \rho is the rest density then the tensor can be written as
T^{ab} = \rho W^aW^b - p(g^{ab} -W^aW^b)
for a scalar field p. The...
I expect that others have already asked and answers this question but I could not find it with Google searches. My thought of this apparent antenna reciprocity violation is per below.
Since antenna reciprocity states that an antenna will have same characteristics whether used a transmit...
Hi I have been dealing with a fluid mechanics pressure gradient problem and from a statistical view point I can see how it resolves itself but am puzzled as to how it can occur at the molecular scale from a conservation of linear momentum perspective if Momentum is a conserved quantity
While...
Homework Statement
An incompressible fluid of density ##\rho## flows steadily through a 2D infinite row of fixed shapes. The vertical distance between shapes is ##a##. Define station 1 as the space where velocity enters and station 2 where it exits. Also, velocity and pressure are constant...
Homework Statement
A 500.0-g bird is flying horizontally at 2.25 m>s, not paying much attention, when it suddenly flies into a stationary vertical bar, hitting it 25.0 cm below the top(Fig. P10.85). The bar is uniform, 0.750 m long, has a mass of 1.50 kg, and is hinged at its base. The...
So I read that the conservation of momentum is a result of:
F1=-F2 <Newton's Third Law
t1=t2 <Time in contact
Therefore:
F1*t1=-F2*t2
F=m(Δv/t)
Ft=mΔv
So we can conclude:
m1Δv1=-m2Δv2
Therefore momentum is conserved.
Now what force is this? Would it be the same normal force that exists when...
Imagine two equal charges, one at rest and the other moving uniformly. From Special Relativity we know that the electric field of the moving charge is different respect the one of the charge at rest. So the two forces of the interaction do not verify the law of action-reaction and there is a...
Homework Statement
Pole-vaulting is a fantastic example of energy being converted from one form to another. A pole- vaulter 1.7 m tall runs at 30 km/h (8.4 m/s) with her pole before starting her jump. The kinetic energy she generates is converted into elastic potential energy of the pole...
Hello everyone!
I have a problem , to which I do not understand the law of conservation of angular momentum... I searched this problem on the web and it is obvious that I am making the mistake.
So we have a rod of length ##L## and mass ##m## that is lying on a horizontal frictionless table. We...
This is from text [Introduction to Lagrangian and Hamiltonian Mechanics] on NTNU opencourse.
Annnnd... I don't use english as my primary language, so sorry for poor sentences.
I can't get two things in here.
First, at (1.12) I can't understand how L dot derivated like that.
Since I know...
I read that since CPT-symmetry is not broken, and CP-symmetry is, T-symmetry must also be broken, is that correct?
If that is correct, does that mean that energy isn't conserved?
I am still in secondary school so I probably shouldn't think about things this complicated (at least that's what it seems to me, complicated), but please correct me if I'm wrong. If I recall correctly, the position of an electron is never certain, and always based on probability, unless...
If a car crashes with a stationary tree and comes to stop, we could say that the kinetic energy of the car was converted to heat and that the collision was inelastic. However, conservation of momentum dictates that momentum is still conserved. How would that be possible given that neither the...
Hi all,
Can you guys provide a proof of the conservation of etendue (simple/memorable is preferred, if possible!) and a few realistic, practical examples just so I can get the hang of the ideas and the calculations? Much appreciated.
Say there is a man swinging in space on a rope attached to a pivot. The man is rotating at some constant angular speed w.
Now he climbs up the rope at some constant speed v. Apparently the angular momentum is conserved. As a result his speed increases. However, how does his speed increase if...
I've read that one of the primary motivations for the need for QFT is that quantum mechanics cannot account for particle creation/annihilation, however special relativity "predicts" that such phenomena are possible (clearly they have been observed experimentally, but I'm going for a heuristic...
I'm trying to derive the conservaton of energy for electromagnetic fields with currents from the action principle, but I have some trouble understanding how the interaction term in the Lagrangian fits into this.
The approach I have seen so far has been to express the Lagrangian density as...
Hi, guys.
In Povh's book, page 198, he says: "The strong force conserves the strangeness S and so the neutral kaons are in an eigenstate of the strong interaction."
I do not see why this must be the case. My atempt to understand it:
$$ŜĤ_s |K_0 \rangle = Ĥ_sŜ |K_0 \rangle$$
So
$$Ŝ(Ĥ_s |K_0...
Homework Statement
Attached.
Homework Equations
I am assuming the coordinate transformation is \vec{x}' = \vec{x} + \alpha\vec{\gamma} ?
Then you have \vec{v}' = \vec{v} + \alpha\frac{d\vec{\gamma}}{dt}
And r is the magnitude of the x vector.
The Attempt at a Solution
Part A.
So to get the...
for my physics class a was working on a formula about conservation of energy
could you guys tell me if it is somewhat right and stuff i forgot about
=constant/s
so this is my try making a formula about the total energy in the universe
1. Homework Statement
final charge on 3 microF be q1, on 2 microF be q2 and on 1.5 microF be q3
Intial charge on 3 microF is 360 microC and intial charge on 2 microC is 300 microF
Homework Equations
how the charge conservation takes place at the three junctions in the circuit
The Attempt...
A uranium-238 atom can break up into a thorium-234 atom and a particle called an alpha particle, α-4. The numbers indicate the inertias of the atoms and the alpha particle in atomic mass units (1 amu = 1.66 × 10−27 kg). When an uranium atom initially at rest breaks up, the thorium atom is...