If conservation of charge gets violated in future experiments, what would be the implications on relativity? I have some faint idea that this will cause photons to have non-zero rest mass, but does this affect special relativity at all? Also, does special relativity make conservation of charge...
Please help me to understand which ans is correct.
To determine the ##P2##.
$$
h_{LM}\ne 0
$$
Method 1:
$$dP=\frac{\partial P}{\partial x}dx+\frac{\partial P}{\partial y}dy+\frac{\partial P}{\partial z}dz$$$$\phantom{\rule{0ex}{0ex}}\rho \overset\rightharpoonup{a}=-\triangledown p+\rho...
For this problem,
The solutions are,
However, how would we solve this without using the idea of conservation of string? Can we apply Newtons second law to each mass?
My working is:
Then apply Newton's Second Law to each pulley,
(Line 1)
(Line 2)
(Line 3)
(Line 4)
Many thanks!
So i was able to solve the angular velocity part but i don't know how to find the velocity of centre of mass . For the first part i simply conserved momentum about COM because if i consider the particles as a part of the same system as rod the collision are internal forces . I am mainly...
I found this article* about the behavior of quasar outflows in cosmology and how they can create a magnetic field.
In section 2.1.4., the authors say that when a quasar produces a "wave" or an outflow, the material will be emitted with energy coming from both the quasar itself and the Hubble...
-Solved for vf using equation 3 to get 20.0m/s (speed before explosion) then solved for the distance to reach the explosion using equation 4, to get 20.0m, which felt wrong having the same numbers but that may just be coincidence.
-Found the distance travelled of the lighter piece using 530m -...
I tried approaching this question like this:
F_N - mgcos(theta) = -mR(theta_dot)^2
and theta_dot = v/R since R is constant
F_N = m(gcos(theta) - (v - v_0)^2/R) (with v being final velocity and v_0 being the initial velocity from the impulse)
and then using energy conservation:
at t = 0: E =...
So i am tried to conserve momentum and use conservation of mechanical energy but won't there be psuedo force acting on the block if i am solving from non inertial frame ?. If i ignore the pseudo force and simply use C.O.M.E and include the K.E of the wedge and solve normally i do get the...
For the first part, the mass sits at rest on the spring, so it is at the equilibrium position and thus mg = kd
So, d = mg/k
For the second part, I assume the uncompressed spring position is 0. When the mass at rest at the top. Its KE and PE is 0. When the mass at distance D, the question said...
If energy is "not conserved" in General Relativity (or at least, it is difficult to define it) in the context of an expanding accelerating spacetime (like it happens in our Universe), are there any observations of deviations from the strict conservation laws in the evolution and formation of...
Hi,
I completely failed this homework. I mean I think I know what happen, but I don't know how to show it mathematically. The energy lost by the wave is used to oscillate the electrons inside the conductor. Thus, the electrons acts like some damped driven oscillators.
I guess I have to find...
I am trying to solve this two level (Schrodinger) equation as a function of time:$$i\begin{pmatrix}
\dot{x}\\
\dot{y}
\end{pmatrix} = \begin{pmatrix}
0 & iW+dE_0sin(\omega t)\\
-iW+dE_0sin(\omega t) & \Delta
\end{pmatrix}\begin{pmatrix}
x\\
y
\end{pmatrix}$$
(I can go into more details about...
I have a wrecking ball with a mass of .5kg traveling at 3.03 m/s that hits a stationary block .9 meters high, weighing .06kg. I calculated the ball's exit velocity after it hits the block to be -3.00 m/s .
I calculated the final velocity of th block to be 4.2 m/s
Vf = Sqrt 2(g)(h) = sqrt...
This question was raised but not answered in a thread which is now permanently closed. Consider the local conservation of charge ##\partial_{\mu}j^{\mu}=0##. In quantum field theory it is valid as an operator identity, but operators as such do not have a direct operational (experimental)...
I already know the solution to this, all you do is set the height of the top of the trampoline to 0 and solve for initial velocity so the equation for the conservation of energy $$mgh_0 + \frac{1}{2}mv_0^2 + \frac{1}{2}kx_0^2 = mgh_1 + \frac{1}{2}mv_1^2 + \frac{1}{2}kx_1^2$$ becomes...
Hello there, I have tried the problem but don't get a different of 6g's as I am supposed to. I am not sure whether I interpreted the problem in the correct way, but I would love some feedback/hints on what went wrong in my solution, thanks in advance.
Solution:
SITUATION DRAWINGS + FBDS
so...
Many texts state that in an elliptic orbit you can find angular momentum magnitude as
$$ L = r m v = m r^2 \frac {d \theta} {dt} $$
I wonder if
$$ v = r \frac {d \theta} {dt} $$
is valid at every point. I understand this approximation in a circumference or radius r but what about an arc...
so I haven't looked at the solution yet, but I know that a 100% the velocity needs to be bigger, but analytically, I get a - sign instead of a + sign as you'll see at the final square root.
So for the first 15meters of the motion all you should know is that ##v_1 = 10.458 m/s##.
for the 2nd...
this is an easy problem but would it be possible to consider car-car system. What I did on paper was carsystem and because they have the same properties(mass en speed) multiply by ##2##
solution for car-car-earth system I assume is the following if it is possible?
solution for car-car:
law or...
We know that if we take two particles and assume no external force is applied then by Newtons third law total momentum gets conserved after collision. If we take three particles and there is collision between them and no external force then the momentum is again conserved for each pair like in...
If we have a ball with mass m dropped from a height h down to the ground, how come we can't set the conservation of energy equation just as the velocity of the ball turns 0.
mgh = 0
If instead the ball were moving with an initial velocity v, would the equation be
##mgh + \frac{1}{2}mv^2 = 0##...
If I consider only the freight car's mass and the mass dm that's added to the freight car as part of the system, then I get this answer:
https://ibb.co/QfKSqQ5
But if I consider the freight car's mass, the mass dm, and the locomotive car as part of the system (maintaining the locomotive has...
This is the catapult.
At equalibrium the spring is 0.09 meters in length.
When its fully stretched out its 0.225 meters long and I place a rock (0.205 kg) close to where my finger is on the catapult.
The catapult starts with this much energy because 1/2 * k * x^2
90.54 is the spring constant...
I was able to calculate the correct answer (given by a solution sheet), V=5.364 m/s, using the momentum impulse equation, P0+J=Pf. If this value is correct, however, I don't understand how energy is being conserved. The speed increases after the person bounces off the trampoline while the mass...
Hello everyone, I have a doubt regarding the conservation of angular momentum.
When dealing with collisions between two objects, if the net external force is zero we know that the linear momentum is conserved; even when the system is not isolated, for instance because of gravity acting on the...
Hi!
I want to start with saying that I'm not an expert on these type of problems, but I will be gratefull for some calarifications.
I've heard that there's nothing in psysics that says that time travel is impossible. I want to make a case with the time traveling battery. Could be any mass with...
I thought the answer is B because the angular momentum in conserved in all 3 pictures.
<Moderator's note: Use of external servers not allowed. Please upload all images to PF.>
Suppose we have a rotating body like a bicycle wheel in space away from gravity. This body stops after a while due to friction between the wheel and wheel axles. Is not the conservation of angular momentum violated?
Hey, I have a question about explosions and how kinetic energy works during them. I have outlined my question on the attached image. Please let me know if something is wrong or needs clarifying. Thank you.
Ei = 1/2 K (x)^ 2
K = .0152N/m
x = .0375 m
Ei = 1.06x10^-5
Ef= 1/2mv2 + mgh
m = .164kg, v is unknown, h is .0375sin(8.3)=.00541, Ef set equal to Ei
1.06x10^-5=1/2(.164kg)(v^2)+ (.164kg)(9.8)(.00541)
v = .3254m/s
I have gotten this answer multiple times but it is not correct. I am going...
I can understand that using conservation of momentum, we can find v. But we need V for that. The equation for V involves h and so we need h. But I am not able to comprehend the equation involving l,h and a. The question doesn't specify what a is.
Please be kind to help
The transition probability -- the probability that a particle which started out in the state ##\psi_a## will be found, at time ##t##, in the state ##\psi_b## -- is
$$P_{a \to b} = \frac{|V_{ab}|}{\hbar^2} \frac{sin^2[(\omega_0 - \omega)t/2]}{(\omega_0 - \omega^2}.$$
(Griffiths, Introduction...
As my current studies have proven conservation of energy is a universal law. How is it possible for two entangled particles to be equally or similarly affected when a force or energy is applied to a single member of the entangled pair? The production of such a pair would be invaluable to...
By "DART will have a relative speed of 6250 ms-1 when it collides with the asteroid", I assume it is the relative speed of the DART with respect to the asteroid.
Using that assumption, I can answer question (a)
For question (b), I don't understand the solution from the teacher. He did it like...
Hi all,
My question is about Doppler redshifts, but I'm going to mention cosmological redshifts first because I'm a lay person as far as cosmology's concerned (I'm an amateur astronomer and did a few introductory astrophysics/cosmology courses at university, but my degree focus was planetary...
So I am guessing the cannons final velocity will be 4 m/s to the left because there momentum before shot was 0 because of opposite and equal reaction so
50,000kg x -4 m/s + 20kg x 10,000 m/s = 0 ?
The classic way to go about this problem would be to use Kepler's laws and thus find the new time period of earth.
However I encountered this question in a test on rotational motion which deals with conservation of angular momentum.
The equation used here would be I1ω1= I2ω2
Replacing I with MR2...
Hi all, I'm not a physics student (although I have a PhD in a different field) and so don't have the math, but I'm trying to interpret a key passage from Krauss' book 'A Universe from Nothing' where he is (trying?) to explain, in 'layman's terms', what Alan Guth termed 'the ultimate free lunch'...
I have used the work energy theorem like all source have shown me an have arrived at the right answer
where work one by all the forces is the change in kinetic energy
-1/2kx^2 - umgcosΘx +mgsinΘx = 0 is the equation
which becomes
-1/2kx -umgcosΘ+ mgsinΘ = 0
where k= spring constant
u=...
Hello,
I'm reading Feynman Lectures Vol II, and saw this "paradox" in section 26-2 (Figure 26-6), where two orthogonally moving charges can be shown to have unequal action and reactions. Later in Chapter 27, the explanation was given briefly citing field momentum.
I tried to prove this...
Hello guys,
could someone give me a small hint to get me started on attempting this problem? I really cannot figure out how to relate conservation of momentum to the fact that there shouldn't be friction... does it have something to do with the so-called "sweet spot" of the ball?
But then...
So assume we have a wedge traveling at a constant V horizontally, that is braced so it CANNOT move vertically. Ignore air and friction. See picture.
It hits a stationary tennis ball and due to the angle, there is a net force on the ball as shown.
The energy should come from the kinetic...
Hi all,
I'm opening this thread because of my uncertainty in how to correctly approach this exercise.
My first thought was that, since the plate is subject to friction with the floor, it is going to stop, thus the final moment is 0. Hence, from the conservation of linear moment:
$$m_Av_A+\sum...
In a closed system consisting of a set of particles not at rest relative to each other and acting on each other only by classical mechanical collision (i.e. billiard balls model, not including gravity or other long-range interactions), does conservation of momentum imply that the system will...
It is known that constructive interference in one place must be compensated for by destructive interference in another. Take a simple Fabry Perot resonator for example. The interference occurring at both sides of the first mirror (assuming one incident electric field) compensate each other out...
I got curious about firearm ballistics and googled something similar to "bullet momentum vs kinetic energy".
IIRC, momentum P = mv (checked); and kE = (mv^2)/2 (also checked).
So I essentially wondered if it's worse to get hit by a bullet with greater kE than by one with lesser kE, presuming...
Hi everyone! I regularly use the forum to learn but never registered to post anything, as I have nothing to teach really…
But today I have a question regarding the law of conservation of energy that I can’t find the answer to, and maybe someone will help me understand:
(I’ve attached a drawing)...
Quantum mechanically speaking when we split a wave in two the resulting waves must have a 90 degrees phase difference for energy to be conserved. Take the beamsplitter depicted in [1] for example. But the Fresnel equations state that the reflected wave should experience a phase shift of π when...