Momentum ##\vec{p}## before collision is momentum of proton of the energy ##E=76.4\mbox{GeV}##. Law of conservation of energy is
E+mc^2=E_1+E_2+...+E_n
mc^2=0.94\mbox{GeV}
We could generate only even number of particles after collision because of law of conservation of electric charge. Also...
Angular momentum can be exchanged between objects in a closed system, but total angular momentum before and after an exchange remains constant (is conserved).
There is a proof about this conservation?
Hi
With the 2-body problem relating to planetary orbits i have encountered the following ; the gravitational force on the reduced mass acts towards the large mass(Sun) and since it is a central force it exerts no torque about the fixed centre(Sun) so angular momentum is conserved.
Conservation...
This question is given as an exercise in my book. I can't figure out whether this is a poorly worded question or if I misunderstand. The answer I can come up with is that power is dissipated over the load so more power is needed to be supplied by the ac source. This seems too hand-wavy to me...
Hello,
The question I have pertains to conservation of Angular momentum on a motorcycle. I know that the dynamic friction is less than the static friction, so when you are braking on a (say a motorcycle) and the wheels lock up, the bike is bound to fall over. This is the reason ABS (Anti-lock...
Although I am not too sure how to answer this quesion I have tried below.
I realize that an electromotive force is a supply voltage, the energy transferred per unit charge when one type of energy is converted into electrical energy. However, EMF is not actually a force. It is usually measured...
To my mind, there are two distinct approaches to energy problems that different authors tend to use, and I wondered whether either is more fundamental than the other. The first is variations on the work energy theorem, and the second consists of defining a system boundary and setting the change...
There must be something I'm not understanding about capacitors in series.
I know that we can treat them as one equivalent capacitor with:
(1) with 1/Ceq,
(2) same Q as anyone of the capacitors,
(3) and add up the Vs for the sum total V across them.
If the equivalent capacitor (Ceq) would...
Hi ; I have a few question regarding the conservation of linear and angular momentum. Would appreciate any help.
1 - When no external forces act are both linear and angular momentum conserved in all 3 directions separately or just the total linear/angular momentum conserved ?
2 - if I approach...
I'm still on section 5.4 of Carroll's book on Schwarzschild geodesics
Carroll says "In addition, we always have another constant of the motion for geodesics: the geodesic equation (together with metric compatibility) implies that the quantity $$...
I suppose spring compression to be X when jumpping from 1m. Therefore gravational potential mgh=760(1+X) and my cal:760(1+X)=0.5kX²
why the solution manual state that 760=0.5kX²+760X
QUESTION:
-----------
For the purposes of this problem, we will define the direction of Vehicle A's initial velocity as the positive direction:
While driving on a road that is inclined at an angle of 10 degrees above the horizontal, Vehicle A and Vehicle B are in a head-on collision lasting...
We know classical equations fail to follow conservation of momentum and energy when we are dealing with speeds closer to the speed of light. But does it fail in the center of mass reference frame of a system?
I probably haven’t thought this through. A sideview of a closed container filled with air consisting of two vertical cylinders (with radius ##r_1## and ##r_2##) are connected by two horizontal tubes. The container is separated by a small and a large lid (red) that are circular and can move up...
Hello everyone,
someone could explain me please, why the work of the normals forces are 0 ?
He used with conservation energy equations.
How should I refer to the displacement point ?
Thx everyone !
I've searched threads and can't find easy explanation - sorry if I'm missing something basic / have a basic understanding error!
In the classic picture of an EM wave with the Electric and Magnetic components oscillating at 90 degrees to each other, both components cross the middle axis at the...
I got the I3 values for the tau(minus) to be -1, as charge is -1 and Y=0. For muon(minus) i got I3 to be -1 too using the same equation and the anti electron neutrino to have an isospin of zero (since Q=0, Y=0). This shows I3 to be conserved (which is needed for strong interaction i believe)...
Hi,
I have read over several threads already on this and have a few questions if someone could please answer that would be great:
1) The threads seem to suggest that energy is not conserved (or at least it isn't a requirement) on the scale of the universe. Why does it not have to be conserved...
I have some conceptual questions about this task. In order to get the correct result (I checked the textbook answer) in part (a) I had to assume that the speed for each block is the same at all instants. And that if one block moves down x meters, the other one will move up that same amount of...
Tell me if I'm right:
A) Angular momentum is conserved because there are no external torques. Linear momentum isn't conserved because gravity is acting on the spacecraft . Mechanical energy isn't conserved because it has to change between different orbits.
B) Parabolic orbit...
Hi.
As far as I know, during the unitary evolution of quantum states, conservation laws are respected. Obviously this can't be true for the measurement process, if we only look at the system and exclude the observer. Now the simple explanation I've heard about this is that in quantum mechanics...
Hello everyone!
It seems I can't solve this exercise and I don't know where I fail.
By inserting the metric on the lefthand side of I. and employing the chain rule, the equation eventually reads (confirmed by my notes from the tutorial):
$$m\frac{\mathrm{d}p_\delta}{\mathrm{d}t} =...
So Earth and everything is spinning around at 1000mph at the equator. From our perspective we are at a standstill. But let's say a fighter jets flies east to West against Earth at same speed, so now relative to someone in space, the Earth spins but the plane is at a standstill.
Wouldn't that...
When I solved the problem using the conservation of angular momentum, I have got the correct result (ω = 0.006 rad/s). However, when I tried to find the answer using the conservation of energy the result was incorrect and I do not understand why.
a)
On the black part, all incoming light is absorbed. This means that the momentum of the left-light beam doesn't change (i.e. momentum before hitting the black screen is ##\vec p_0## and after hitting it is zero. Thus ##\Delta \vec p = \vec p_0##). If momentum doesn't change, we get no...
In classical mechanics, the energy of a system of particles (say with 2 particles) in an external field is given by
$$E=\frac{1}{2}m_1|\vec{v}_1|^2+\frac{1}{2}m_2|\vec{v}_2|^2+V(\vec{r}_1)+V(\vec{r}_2)+V'(|\vec{r}_2-\vec{r}_1|)$$
Where V is the potential energy of the external field, and V' is...
Using conservation of energy,
0.5kx^2=mgh=mgx
0.5kx=mg
0.5kx=mg, x=0.15, m=9, g= 9.8
So isn't it k= 1176N/m?
For this problem, I understand that you can't use conservation of energy, but why? There is gravitational potential energy at the top and spring elastic energy at the bottom, and no...
I am unable to find any angle for which the horizontal and vertical components of the linear momentum are conserved.
I have added an image of my attempt
Hello, I am new on this forum, so if I make any mistakes please inform me. Thank you.
I wonder why I cannot use forces instead of energy conservation in this question.
The question is:
"How far (x = L) does the spring stretch before the masses stop moving? Express your answer in terms of m, k...
I think we can.Although the wall is not moving, it is just because the wall has a huge mass.As rhe law of the conservation of momentum states(suppose the ball hits the wall from the left), when the momentum decrease by J, the momentum of the wall increase by J, which means the momentum of the...
I found out that the operator H is not a Hermitian operator but I didn't understand the second part of the question. What do I calculate the probability of?
I tried solving it using this method and I got 12.5m/s, and assumed the collision was elastic.
The answer is actually 6.32m/s [41.5 degrees counterclockwise from the original direction of the first ball]; the collision is not elastic: Ek = 12.1J Ek`= 10.2J
I have absolutely no idea how the...
According to the first equation, the final potential energy is equal to the initial kinetic energy of the block. So that means that Vblok is the instantaneous speed of the block right before it moves to the right and compress the spring, right? But doesn't the second equation (The initial total...
I really want to know which answer is correct. I don’t really know if I should include velocities to the left as negative velocities in the equation. Is it -1 or 4.33? Please help! Thanks!
Upon reading, realized that equations of consevation of energy would be of use for this question.
I considered the energy of the system - the spring mass and box - taking into account that there will be Elastic potential energy of the spring, and we can arbitrarily set the intial positon(A) of...
So the Bernoulli's Equation..
My question : Are the terms on the left hand side equal to the total mechanical energy? So can I rewrite this equation as ?
My Solution:
For the displacement graph, the gradient is crucial to predict the behaviour of the displacement of the block through time.
At 1: System is released - velocity is zero, considering forces acting on block, kx < mg, as block is observed to move downwards, and object is...
Hello to all. Second post here so I apologise if I post to the wrong place with wrong altitude etc
We have a schematic of a problem like here:
https://www.physicsforums.com/threads/conducting-rod-is-free-to-move-over-a-loop-under-influence-of-b-field.750763/
The conducting rod ab shown in the...
Suppose a bullet with high speed strike a wooden block and move together after collision. We know there is loss in total KE of bullet-wooden block system. The question is, if the part of the loss in KE of the bullet is transfer to heat energy, HOW to prove the CONSERVATION of ENERGY in this...
Suppose I have a system of two disks (identical in mass and size) one is fixed to a shaft at it's center point and rotating due to an external torque that's removed as soon as the rotational motion begins. The second disk is dropped from rest over the rotating disk and sticks together to the...
I'm all messed up on this problem. I see you can get the solution (74cm, as listed in the back of the book) by simply setting mgh=1/2kx^2, saying that h=x, and then adding 15 cm to that since that's the original length of the spring. This is the solved solution I was given. But now I think...
Not sure what to do here, except using the conversation of angular momentum. Even then, is angular momentum conserved in this case even after attaching an external object here? Else, what laws can I use to solve this problem?
Using conversation of angular momentum:
$$\dfrac...
Unfortunetly, I found across the web only the case where there's no source, in which case ##\partial_\alpha T^{\alpha \beta} = 0##. I'm considering Minkowski space with Minkowski coordinates here.
When there's source, is it true that ##\partial_\alpha (T^{\alpha \beta}) = 0## or is it ##\int...
I attached a PDF file where it clearly show the question and I showed my solution because trying to type it here will be quite hard
I want to check if my solution is correct
v1 = 0 m/s
v2 = 2.5 m/s
y1 - y2 = distance a quarter of the way around the bowl (since we're neglecting friction)
mass can be factored out, so it isn't needed, and some simplifying and the like gets this formula:
v22 = v12 + 2g(y1 - y2)
so 2.52 = 0 + 2(9.8)(y)
6.25 = 19.6y
y = 0.318877551 m *...
The arrow is following projectile motion to the target when released from an archer's bow.
v vertical = 10ms^-1 v horizontal = 50 ms^-1 resultant v = √2600
mass of arrow = 20*10^-3
I attempted to use F avg = mΔv/Δt to calcualte the average force where Δt = 5*10^-3 /...
This is more like a theoretical question of my own than actual homework.
Say there is a circuit with a current source and an inductor. There is a current ##i(t)=at## going through the inductor. We now place a new circuit with an inductor and a resistor next to it. The current ##i(t)## causes a...