Covariant vectors

In multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis.
In physics, a basis is sometimes thought of as a set of reference axes. A change of scale on the reference axes corresponds to a change of units in the problem. For instance, by changing scale from meters to centimeters (that is, dividing the scale of the reference axes by 100), the components of a measured velocity vector are multiplied by 100. Vectors exhibit this behavior of changing scale inversely to changes in scale to the reference axes and consequently are called contravariant. As a result, vectors often have units of distance or distance with other units (as, for example, velocity has units of distance divided by time).
In contrast, covectors (also called dual vectors) typically have units of the inverse of distance or the inverse of distance with other units. An example of a covector is the gradient, which has units of a spatial derivative, or distance−1. The components of covectors change in the same way as changes to scale of the reference axes and consequently are called covariant.
A third concept related to covariance and contravariance is invariance. An example of a physical observable that does not change with a change of scale on the reference axes is the mass of a particle, which has units of mass (that is, no units of distance). The single, scalar value of mass is independent of changes to the scale of the reference axes and consequently is called invariant.
Under more general changes in basis:

A contravariant vector or tangent vector (often abbreviated simply as vector, such as a direction vector or velocity vector) has components that contra-vary with a change of basis to compensate. That is, the matrix that transforms the vector components must be the inverse of the matrix that transforms the basis vectors. The components of vectors (as opposed to those of covectors) are said to be contravariant. Examples of vectors with contravariant components include the position of an object relative to an observer, or any derivative of position with respect to time, including velocity, acceleration, and jerk. In Einstein notation, contravariant components are denoted with upper indices as in





v

=

v

i




e


i




{\displaystyle \mathbf {v} =v^{i}\mathbf {e} _{i}}
(note: implicit summation over index "i")
A covariant vector or cotangent vector (often abbreviated as covector) has components that co-vary with a change of basis. That is, the components must be transformed by the same matrix as the change of basis matrix. The components of covectors (as opposed to those of vectors) are said to be covariant. Examples of covariant vectors generally appear when taking a gradient of a function. In Einstein notation, covariant components are denoted with lower indices as in






e


i


(

v

)
=

v

i


.


{\displaystyle \mathbf {e} _{i}(\mathbf {v} )=v_{i}.}
Curvilinear coordinate systems, such as cylindrical or spherical coordinates, are often used in physical and geometric problems. Associated with any coordinate system is a natural choice of coordinate basis for vectors based at each point of the space, and covariance and contravariance are particularly important for understanding how the coordinate description of a vector changes by passing from one coordinate system to another.
The terms covariant and contravariant were introduced by James Joseph Sylvester in 1851 in the context of associated algebraic forms theory. Tensors are objects in multilinear algebra that can have aspects of both covariance and contravariance.
In the lexicon of category theory, covariance and contravariance are properties of functors; unfortunately, it is the lower-index objects (covectors) that generically have pullbacks, which are contravariant, while the upper-index objects (vectors) instead have pushforwards, which are covariant. This terminological conflict may be avoided by calling contravariant functors "cofunctors"—in accord with the "covector" terminology, and continuing the tradition of treating vectors as the concept and covectors as the coconcept.

View More On Wikipedia.org
Back
Top