Debroglie wavelength

Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. In most cases, however, the wavelength is too small to have a practical impact on day-to-day activities.
The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie () in 1924. It is also referred to as the de Broglie hypothesis. Matter waves are referred to as de Broglie waves.
The de Broglie wavelength is the wavelength, λ, associated with a massive particle (i.e., a particle with mass, as opposed to a massless particle) and is related to its momentum, p, through the Planck constant, h:




λ
=


h
p


=


h

m
v



.


{\displaystyle \lambda ={\frac {h}{p}}={\frac {h}{mv}}.}
Wave-like behavior of matter was first experimentally demonstrated by George Paget Thomson's thin metal diffraction experiment, and independently in the Davisson–Germer experiment, both using electrons; and it has also been confirmed for other elementary particles, neutral atoms and even molecules.

View More On Wikipedia.org
Back
Top