Differentiable

In calculus (a branch of mathematics), a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain. A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp.
More generally, for x0 as an interior point in the domain of a function f, then f is said to be differentiable at x0 if and only if the derivative f ′(x0) exists. In other words, the graph of f has a non-vertical tangent line at the point (x0, f(x0)). The function f is also called locally linear at x0 as it is well approximated by a linear function near this point.

View More On Wikipedia.org
Back
Top