Dirac notation Definition and 103 Threads

In quantum mechanics, bra–ket notation, or Dirac notation, is ubiquitous. The notation uses the angle brackets, "






{\displaystyle \langle }
" and "






{\displaystyle \rangle }
", and a vertical bar "




|



{\displaystyle |}
", to construct "bras" and "kets" .
A ket looks like "




|

v



{\displaystyle |v\rangle }
". Mathematically it denotes a vector,




v



{\displaystyle {\boldsymbol {v}}}
, in an abstract (complex) vector space



V


{\displaystyle V}
, and physically it represents a state of some quantum system.
A bra looks like "




f

|



{\displaystyle \langle f|}
", and mathematically it denotes a linear form



f
:
V


C



{\displaystyle f:V\to \mathbb {C} }
, i.e. a linear map that maps each vector in



V


{\displaystyle V}
to a number in the complex plane




C



{\displaystyle \mathbb {C} }
. Letting the linear functional




f

|



{\displaystyle \langle f|}
act on a vector




|

v



{\displaystyle |v\rangle }
is written as




f

|

v



C



{\displaystyle \langle f|v\rangle \in \mathbb {C} }
.
Assume on



V


{\displaystyle V}
exists an inner product



(

,

)


{\displaystyle (\cdot ,\cdot )}
with antilinear first argument, which makes



V


{\displaystyle V}
a Hilbert space. Then with this inner product each vector




ϕ



|

ϕ



{\displaystyle {\boldsymbol {\phi }}\equiv |\phi \rangle }
can be identified with a corresponding linear form, by placing the vector in the anti-linear first slot of the inner product:



(

ϕ

,

)


ϕ

|



{\displaystyle ({\boldsymbol {\phi }},\cdot )\equiv \langle \phi |}
. The correspondence between these notations is then



(

ϕ

,

ψ

)


ϕ

|

ψ



{\displaystyle ({\boldsymbol {\phi }},{\boldsymbol {\psi }})\equiv \langle \phi |\psi \rangle }
. The linear form




ϕ

|



{\displaystyle \langle \phi |}
is a covector to




|

ϕ



{\displaystyle |\phi \rangle }
, and the set of all covectors form a subspace of the dual vector space




V






{\displaystyle V^{\vee }}
, to the initial vector space



V


{\displaystyle V}
. The purpose of this linear form




ϕ

|



{\displaystyle \langle \phi |}
can now be understood in terms of making projections on the state




ϕ



{\displaystyle {\boldsymbol {\phi }}}
, to find how linearly dependent two states are, etc.
For the vector space





C


n




{\displaystyle \mathbb {C} ^{n}}
, kets can be identified with column vectors, and bras with row vectors. Combinations of bras, kets, and operators are interpreted using matrix multiplication. If





C


n




{\displaystyle \mathbb {C} ^{n}}
has the standard hermitian inner product



(

v

,

w

)
=

v




w


{\displaystyle ({\boldsymbol {v}},{\boldsymbol {w}})=v^{\dagger }w}
, under this identification, the identification of kets and bras and vice versa provided by the inner product is taking the Hermitian conjugate (denoted






{\displaystyle \dagger }
).
It is common to suppress the vector or linear form from the bra–ket notation and only use a label inside the typography for the bra or ket. For example, the spin operator







σ
^




z




{\displaystyle {\hat {\sigma }}_{z}}
on a two dimensional space



Δ


{\displaystyle \Delta }
of spinors, has eigenvalues



±


{\displaystyle \pm }
½ with eigenspinors





ψ


+


,


ψ






Δ


{\displaystyle {\boldsymbol {\psi }}_{+},{\boldsymbol {\psi }}_{-}\in \Delta }
. In bra-ket notation one typically denotes this as





ψ


+


=

|

+



{\displaystyle {\boldsymbol {\psi }}_{+}=|+\rangle }
, and





ψ





=

|





{\displaystyle {\boldsymbol {\psi }}_{-}=|-\rangle }
. Just as above, kets and bras with the same label are interpreted as kets and bras corresponding to each other using the inner product. In particular when also identified with row and column vectors, kets and bras with the same label are identified with Hermitian conjugate column and row vectors.
Bra–ket notation was effectively established in 1939 by Paul Dirac and is thus also known as the Dirac notation. (Still, the bra-ket notation has a precursor in Hermann Grassmann's use of the notation



[
ϕ



ψ
]


{\displaystyle [\phi {\mid }\psi ]}
for his inner products nearly 100 years earlier.)

View More On Wikipedia.org
  1. M

    How to Derive the Time Evolution of Expectation Values in Quantum Mechanics?

    Hi everyone, my problem is this Using Dirac notation show that \frac{d}{dt}<\varphi|\hat{A}|\varphi> = \frac{i}{\hbar}<\varphi|[\hat{H},\hat{A}]|\varphi> where A does not explicitly depend on t I am given as a hint that the hamiltonian operator in Dirac notation is...
  2. P

    Understanding Dirac Notation in Quantum Mechanics

    1.) an inner product of a state vector represent by <\psi|\psi>. sometimes the notation is like <\phi|\psi> is mean transfer from state |\psi> to <\phi|.it mean the former 1 do not transfer the state? what is the difference between both? 2.) what is mean by <x|\psi>? is it mean x(position)...
  3. S

    How Do You Compute the Adjoint of a Quantum State in Dirac Notation?

    Homework Statement 1. Given that |ψ> = eiπ/5|a> + eiπ/4|b>, express <ψ| as a linear combination of <a| and <b|. 2. What properties characterise the bra <a| that is associated with the ket |a>? Homework Equations The Attempt at a Solution 1. <ψ| = e-iπ/5<a| + e-iπ/4<b| 2. a. The bra <a|...
  4. O

    Elementary question about Dirac notation

    Hello, I'm in an introductory course about quantum computing. My math experience is fairly solid, but not very familiar with Dirac (bra-ket) notation. Just would like to clarify one thing: In a single cubit space, we have |0 \rangle , and | 1 \rangle . I understand that these form an...
  5. C

    Dirac Notation, Observables, and Eigenvalues, OH MY

    Alright... So I'm in an 'introductory' Q.M class in college right now, it's the only one that this two-year college has, so I don't have an upper division Q.M Profs to talk to about this, and since my prof is equally confused, I turn to the internet. Okay, so everyone knows that <ψ|Aψ> = <a>...
  6. Jalo

    Simple Dirac Notation Problem: Dot Product of Two Vectors

    Homework Statement Imagine you have two vectors |a> and |b> such that: |c> = |a> + |b> Now imagine you want the dot product: <c|a> Is that the same as: <c|a> = [ <a|*+<b|* ] |a> = <a*|a> + <b*|a> where * represents the complex conjugate of the vector? Homework Equations...
  7. J

    How to Simplify Dirac Notation for Tensor Products?

    How would you simplify this expression: <a|<b|a>|a> where ψ = |a>|b> and I'm finding ψ*ψ.
  8. R

    Operators interpretation (Dirac notation)

    Hi all! If you are given an operator such that A|1> = √(1/3) |1> +√(2/3) |2>, how do we interpret it? I do know that 1/3 and 2/3 are probabilities but is this operator application on state one suggesting that this state in state 1 and 2 with probabilities 1/3 and /3 respectively? Thank you!
  9. M

    Dirac notation expressions as integrals

    Can anyone point me to how to interpret Dirac notation expressions as wave functions and integrals beyond the basics of     <α| = a*(q)     |β> = b(q)     <α|β> = ∫ a* b dq For example in the abstract Dirac notation the expression     |ɣ> (<α|β>) can be evaluated as     (|ɣ><α|) |β>  ...
  10. E

    Square integrable functions - Hilbert space and light on Dirac Notation

    Square integrable functions -- Hilbert space and light on Dirac Notation I started off with Zettilis Quantum Mechanics ... after being half way through D.Griffiths ... Now Zettilis precisely defines what a Hibert space is and it includes the Cauchy sequence and convergence of the same ... is...
  11. M

    Matrix operators Dirac notation

    I'm having trouble seeing how an operator can be written in matrix representation. In Sakurai, for an operator X, we have: X = \sum \sum |a''> <a''| X |a'> <a'| since of course \sum |a> <a| is equal to one. Somehow, this all gets multiplied out and you get a square matrix with the...
  12. M

    Dirac notation and conjugate transpose in Sakurai

    In Sakurai's Modern Quantum Mechanics, he develops the Dirac notation of bras and kets. In one part, he states (page 17): <B|X|A> = (<A|X^|B>)* = <A|X^|B>* where X^ denotes the Hermitian adjoint (the conjugate transpose) of the operator X. My question is, since a bra is the conjugate...
  13. L

    Dyade Dirac Notation: Why Last Equation?

    \{\vec{A},\vec{B}\}\cdot \vec{C}=\vec{A}(\vec{B}\cdot \vec{C}) \vec{C} \cdot \{\vec{A},\vec{B}\}=(\vec{C}\cdot \vec{A}) \vec{B} I want to write dyade in Dirac notation. (|\vec{A}\rangle\langle\vec{B}|)|\vec{C}\rangle= |\vec{A}\rangle\langle\vec{B}|\vec{C}\rangle...
  14. J

    Dirac Notation: Am I doing this right?

    Homework Statement Find <P>. P = i√(mhw/2)(a†-a). Note a† and a are the ladder operators. P is the momentum operator of the harmonic oscillator. |ψ > = (1/sqrt(2))[ |1> - i |2>] The answer should be zero, can someone check my work?Homework Equations a† |n> = sqrt(n+1)|n+1> a |n> =...
  15. R

    What are the properties of Dirac notation and operators?

    Homework Statement [A^{+}A]=1 A|a>=\sqrt{a}|a-1> A^{+}|a>=\sqrt{a+1}|a+1> <a'|a>=\delta_{a'}_{a} Homework Equations what is 1 <a|A|a+1> 4. <a+1|A^{+}|a> 3. <a|A^{+}A|a> 4. <a|AA^{+}|a> The Attempt at a Solution 1. <a|A|a+1> =<a|\sqrt{a+1}|a+1-1>=\sqrt{a+1}<a|a> since a=a and...
  16. X

    Angular Momentum Problem in Dirac Notation

    Homework Statement http://img857.imageshack.us/img857/2079/dirac.png Homework Equations H|ψ> = E|ψ> L^{2}|ψ> = l(l+1)\hbar^{2}|ψ> L_{z}|ψ> = m_{l}\hbar|ψ> The Attempt at a Solution I know this problem is very simple since I've seen a very similar problem a while ago but I've completed forgot...
  17. A

    What is the <lz> Expectation Value for Given Wave Function?

    Homework Statement Find <lz> using \Psi, where \Psi=(Y11+cY1-1)/(1+c^2)). Ylm are spherical harmonics, and <lz> is the angular momentum operator in the z direction. Homework Equations <lz> Ylm = hmYlm The Attempt at a Solution The brackets around <lz> are throwing me off...
  18. E

    Dirac Notation in building Path Integrals

    Alright, so I was wondering if anyone could help me figure out from one step to the next... So we have defined |qt>=exp(iHt/\hbar)|q> and we divide some interval up into pieces of duration τ Then we consider <q_{j+1}t_{j+1}|q_{j}t_{j}> =<q_{j+1}|e-iHτ/\hbar|q_{j}>...
  19. S

    How Do the Commutator Relations Lead to Equation 26 in Quantum Optics?

    Homework Statement http://quantum.leeds.ac.uk/~almut/section2.pdf Please note i am referring to the above notes I basically don't get how the maths works to get (eq(25))(eq(22))(eq(24)) = eq(26) am i missing something interms of the commutator relations ? Homework Equations The Attempt at a...
  20. N

    Learning Dirac Notation: Writing Hamiltonian for 3 States

    I am new to quantum physics. My question is how to write the Hamiltonian in dirac notation for 3 different states say a , b , c having same energy. I started with Eigenvaluee problem H|Psi> = E|psi> H = ? for state a? SO it means that indvdually H= E (|a><a|) for state a and for all three...
  21. V

    How to Represent a Wavefunction in Dirac Notation for an Infinite Square Well?

    Homework Statement For the infinite square well, a particle is in a state given by \psi = \frac{1}{\sqrt 2}(\psi_1 + \psi_3) , where \psi_1 and \psi_3 are energy eigenstates (ground state and the second excited state, respectively). Represent this state as a column matrix \psi> in...
  22. K

    Calculate Expectation Value of Hamiltonian using Dirac Notation?

    Homework Statement I have the state: |\psi>=cos(\theta)|0>+sin(\theta)|1> where \theta is an arbitrary real number and |\psi> is normalized. And |0> and |1> refer to the ground state and first excited state of the harmonic oscillator. Calculate the expectation value of the Hamiltonian...
  23. N

    Dirac Notation and Magnitude of Bra's Help

    Hi all, I was diving into my 3rd year quantum assignment and I saw the following which I have to use for the rest of the question to prove the Cauchy-Schwarz inequality: Homework Statement || a|x> + b|y> ||^2 I only really learned a bit about Dirac notation last year, so please...
  24. U

    Normalised Energy Eigenfunction (Probability with Dirac Notation)

    Homework Statement Normalised energy eigenfunction for ground state of a harmonic oscillator in one dimension is: 〈x|n〉=α^(1/2)/π^(1/4) exp(-□(1/2) α^2 x^2) n = 0 α^2=mω/h suppose now that the oscillator is prepared in the state: 〈x|ψ〉=σ^(1/2)/π^(1/4) exp(-(1/2) σ^2 x^2)...
  25. A

    Dirac Notation - Position and Momentum

    Homework Statement Show that \left\langlex|p|x'\right\rangle = \hbar/i \partial/\partialx \delta(x-x') 2. The attempt at a solution \left\langlex|p|x'\right\rangle = i\hbar \delta(x-x')/(x-x') = i\hbar \partial/\partialx' \delta(x-x') = \hbar/i \partial/\partialx \delta(x-x') For...
  26. 0

    Dirac Notation and completeness relation

    I am confused about two minor things right now. The following illustrates both which I pulled from my QM book: <x|p_{op}|0>=\int_{-\infty}^{\infty}dp<x|p_{op}|p><p|0>=\int_{-\infty}^{\infty}dp~p<x|p><p|0>...
  27. K

    Find an orthogonal quantum state: introduction to dirac notation.

    Homework Statement Suppose we have a spin 1/2 Particle in a prepared state: \left|\Psi\right\rangle = \alpha \left|\uparrow\right\rangle + \beta\left|\downarrow\right\rangle where \left|\uparrow\right\rangle \left|\downarrow\right\rangle are orthonormal staes representing spin up and...
  28. J

    I've gotten stuck with a bit of dirac notation calculation?

    sorry if this looks ugly but I couldn't find out how to write out bras and kets on the Latex thing. I have these inner products <f|g> = i<x|(AB - A<B> - <A>B + <A><B>)|x> and <g|f> = -i<x|(BA - B<A> - <B>A + <A><B>)|x> where |x> is some arbitrary ket and A and B do not commute. I'm trying to...
  29. B

    Understanding Dirac Notation: Tips for Completing Confusing Homework Problems

    Homework Statement Please see attached Homework Equations The Attempt at a Solution Ok so basically a bit confused about notation.. does |psi> = sum over all r of ar |ur> ? any help would be great..thanks
  30. B

    Quantum Question (dirac notation)

    Homework Statement Please see attached :) Homework Equations The Attempt at a Solution Hmm ok so stuck on all parts really..starting with (a), i see that we are looking for the probability that it is in state Eroot6 i.e. |root6> but how do we work this out? It's not a state...
  31. N

    QM: Understanding the Dirac notation

    Homework Statement Hi guys Ok, I have some questions, which I would very much like for you guys to help me with. Say I have some state |1>, which denotes the first, n=1, solution of the infinite, square well. |1> is a vector in the Hilbert space spanned by all the eigenvectors of the...
  32. B

    Simplifying Quantum Mechanics with Dirac Notation

    Homework Statement trying to simplify (using dirac notation) QM: <E| (QH - HQ) |E> using H|E> = E|E> Homework Equations The Attempt at a Solution the textbook says that it simplifies to (E-E) <E|Q|E> = 0 but i can't see how :S
  33. R

    Calculating <\chi_3|H|\chi_3> w/ Dirac Notation Algebra

    Say we have, |\chi_3>=|a+ib> and we want : <\chi_3|H|\chi_3> is it correct to say: <\chi_3|H|\chi_3>= <a|H|a>+<a|H|ib>+<-ib|H|a>+<-ib|H|ib> ??
  34. J

    I need the dirac notation expectation value explaining to me please?

    Hi, I find a lot of the time in QM i have been calculating things blindly. Take the expectation value for instance. I have worked this out in integral form plenty of times, but haven't really understood why I'm doing what I'm doing. I looked up wikipedia and apparently, for a measurable...
  35. R

    The harmonic oscillator in terms of path integrals without dirac notation

    Hi, I'm desperately searching for some literature which discusses the harmonic oscillator, preferably simple, in terms of the path integral formulation. I am unfamiliar with dirac notation and want something as simple as possible which gives general results of the harmonic oscillator in terms of...
  36. D

    Expectation formula in Dirac notation.

    Expectation value of operator A is given by following formula in Dirac notation. <A> = <x|A|x> where A : Operator <A> : Expectation value of A |x> : State Somehow I am unable to convince myself that this formula is true. Would someone please explain it to me? Thanks
  37. I

    Alternate formulation of Dirac Notation

    I was reading some more quantum mathematics, and a question occurred to me. In the current treatment of the topic, the bra-ket notation is defined as a shorthand notation for more complex mathematical operations. But couldn't bra-ket notation be defined separately from quantum physics? In other...
  38. G

    How Do You Construct the Dual Basis in Dirac Notation?

    Homework Statement my apologies if this question should be posted in the math forum 3-d space spanned by orthonormal basis: (kets) |1>, |2>, |3>. Ket |a> = i|1> - 2|2> - i|3>. Ket |b> = i|1> + 2|3>. The question is to construct <a| and <b| in terms of the dual basis (kets 1,2,3)...
  39. J

    How Do You Compute Derivatives in Dirac Notation with Mathematica?

    Hi everybody, I am trying to get the partial derivative of the following with respect to Si[t] and Phi[t] separately: Integrate[<Phi[t]|H|Si[t]>] The operator H is the partial derivative with respect to t. I tried this in Mathematica, calling Needs["Quantum`Notation`"] but I...
  40. S

    Understanding Dirac Notation: A Simplified Explanation for Scientists

    Hello, I'm fuzzy on how Dirac notation works especially when operators are added in. Does anyone have a clear explanation (the simpler the better) that they can give to me, and or a website or book that does a good job of explaining it?
  41. T

    How Does Dirac Notation Impact the Time-Dependent Schrödinger Equation?

    I am working through a problem relating to the conservation of probability in a continuity equation. However, I end up with a contradiction when trying to put the following into the Time-Dependent Schrodinger Equation \frac{\partial\psi(x)}{\partial t}=\frac{\partial\left\langle...
  42. B

    Quantum Mechanics Ladder Operator and Dirac Notation

    Homework Statement I'm given the eigenvalue equations L^{2}|\ell,m> = h^2\ell(\ell + 1)|\ell,m> L_z|\ell,m> = m|\ell L_{\stackrel{+}{-}}|\ell,m> = h\sqrt{(\ell \stackrel{-}{+} m)(\ell \stackrel{+}{-} m + 1)}|\ell, m \stackrel{+}{-} 1> Compute <L_{x}>. Homework Equations Know...
  43. M

    Dirac Notation: Understanding <m|x|n> and Its Relation to Eigenstates

    I have recently finished reading a section on this notation, and while i though i understood it, i now find myself lost The question is to show that <m|x|n> Is zero unless m = n + or - 1 As I understand it so far <m| and |n> correspond to the eigenstates of an arbitrary system and x...
  44. T

    Is my method for finding the dual in Dirac notation correct?

    Hi. I came across a problem in a book of mine that requires me to find the dual of a vector |x> = A |a> + B |b>. However, it's a bit sketchy about taking |x> to <x|. With a little algebra, I got |x>i = A |a>i + B |b>i So <x|i = |x>i* = (A |a>i + B |b>i)* = (A |a>i)* + (B |b>i)* = A*...
  45. R

    How to Write M(x,x') in Dirac Notation?

    Hey guys, I am having difficulty interpreting M(x,x') into dirac notation. How do i write M(x,x') in dirac notation? The actual problem is to write the following in dirac notation: int { int { m(x)* M(x,x') g(x') } dx} dx' I would appreciate your help.
  46. M

    Harmonic Oscillator, Ladder Operators, and Dirac notation

    Defining the state | \alpha > such that: | \alpha > = Ce^{\alpha {\hat{a}}^{\dagger}} | 0 >\ ,\ C \in \mathbf{R};\ \alpha \in \mathbf{C}; Now, | \alpha > is an eigenstate of the lowering operator \hat{a}, isn't it? In other words, the statement that \hat{a} | \alpha >\ =\ \alpha | \alpha >...
  47. T

    Index notation vs Dirac notation

    A professor of mine recently remarked that dirac notation is easily the best in physics & we'd quickly realize this once we take a course in relativity. I've already taken the course & I find myself disagreeing with him, but maybe that's only because I enjoy relativity more. Curious what you...
  48. H

    Is Dirac Notation Standard in QM?

    Hi all, I recently purchased Shankar's Principles of Quantum Mechanics which relies heavily on Dirac's bra-ket notation. I'm just wondering if this is the norm or should I get used to switching between what I'm learning and some other accepted standard notation? Thanks in advance!
  49. A

    Help on QM Problem - Dirac Notation

    Consider the following state vector and Hamiltonian: |\psi (0) \rangle = \frac{1}{5}\left (\begin{array}{cc}3\\0\\4\end{array}\right ) \hat{H} = \left (\begin{array}{ccc}3&0&0\\0&0&5\\0&5&0\end{array}\right ) If we measure energy, what values can we obtain and with what probabilities...
  50. J

    Quantum mechanics in DIRAC notation

    Consider a particle in a harmonic pscillator potential V (x) is given by V = \frac{1}{2}m\omega^2 Also \hat a = n^\frac{1}{2}|n-1>, and \hat a\dagger = (n-1)^\frac{1}{2}|n-1> where \hat a = \frac{\beta}{\sqrt 2}(\hat x + \frac{i\hat p}{m\omega}) \hat a\dagger =...
Back
Top