Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Dual basis
Recent contents
View information
Top users
Description
In linear algebra, given a vector space V with a basis B of vectors indexed by an index set I (the cardinality of I is the dimensionality of V), the dual set of B is a set B∗ of vectors in the dual space V∗ with the same index set I such that B and B∗ form a biorthogonal system. The dual set is always linearly independent but does not necessarily span V∗. If it does span V∗, then B∗ is called the dual basis or reciprocal basis for the basis B.
Denoting the indexed vector sets as
B
=
{
v
i
}
i
∈
I
{\displaystyle B=\{v_{i}\}_{i\in I}}
and
B
∗
=
{
v
i
}
i
∈
I
{\displaystyle B^{*}=\{v^{i}\}_{i\in I}}
, being biorthogonal means that the elements pair to have an inner product equal to 1 if the indexes are equal, and equal to 0 otherwise. Symbolically, evaluating a dual vector in V∗ on a vector in the original space V:
v
i
⋅
v
j
=
δ
j
i
=
{
1
if
i
=
j
0
if
i
≠
j
,
{\displaystyle v^{i}\cdot v_{j}=\delta _{j}^{i}={\begin{cases}1&{\text{if }}i=j\\0&{\text{if }}i\neq j{\text{,}}\end{cases}}}
where
δ
j
i
{\displaystyle \delta _{j}^{i}}
is the Kronecker delta symbol.
View More On Wikipedia.org
Forums
Back
Top