Hello everyone,
I was asking myself about electric field strength estimation at a distance d from - in my case - a half wave dipole antenna.
There are pretty much a lot of information about this on internet or in books but still, there are a few things that are confusing to me that I would...
According to theory I should be able to get the Electric Field (E) from its pOtential (V) by doing the grad (V) so
E = -grad(V), however, V is contant V = k*lambda* pi which results having E =0, but this is not right. What I am missing??
see figure below
The answer should be Ex = 2*k*lambda / r...
From the second equation I get that,
##\vec D =\frac{q}{4\pi \vec r^2}\hat r##
From first equation I get that
##\vec E = \frac{q}{4\pi \vec r^2 \epsilon}=\frac{q}{4\pi \vec r^2 K \epsilon_0}##
But I saw that the answer is ##\vec E=\frac{\vec E_0}{K}##
While writing the comment my mind said...
The dielectric strength of air (ie the maximum electric field that the material can withstand under ideal conditions without undergoing electrical breakdown and becoming electrically conductive) is 3 000 kV ( https://en.wikipedia.org/wiki/Dielectric_strength#Break_down_field_strength ).
In...
So I have been given a uniform electric field ##\vec{E}=20 V/m## in the direction as show in the image. I have been told to calculate the potential difference ##VC - VA##. According to the teacher (on YouTube) the potential difference ##VC - VA = -10\sqrt{2}V##. But I say it's ##-20 V## as...
(a) Knowing ##E##, we can use equation (2) to determine ##V##. However, since ##\vec E## represents the distribution of electric field in space i.e. a function of (x,y,z). For example, ##\vec E = x \hat i + y \hat j + z \hat k##. Here we do not know this function so how can we know ##V## at a...
Electric Flux = E*A = 5*6(0.05)^2.
when i look up at other sources they use Electric flux = q/ (8.854*10^-12 [this is e]) equation
but I am confused on why the E*A equation don't work. The answer is 0.02Nm^2/C
As shown in figure below, the electric field E will be normal to the cylinder's cross sectional A
even for distant points since the charge is distributed evenly all over the charged surface and also the surface is very large resulting in a symmetry. So the derived formula should also apply to...
When we connect tungsten filament light bulb to the battery, filament becomes hot due to electrons losing kinetic energy in the electric field inside of conductor. Heat is eventually converted to electromagnetic radiation making light bulb shine. Light energy comes from flow of electrons and...
What am I missing?
I also don't get the title of the section: "Charge distributions with enough symmetry for Gauss's Law".
I thought Gauss's Law was valid for any closed surface enclosing a charge. I don't understand what "enough symmetry" means in the title above. I get that with symmetry...
Using Gauss's Law
By using a symmetry argument, we expect the magnitude of the electric field to be constant on planes parallel to the non-conducting plane.
We need to choose a Gaussian surface. A straightforward one is a cylinder, ie a "Gaussian pillbox".
The charge enclosed is...
I am interested in particular in the second integral, in the ##\hat{r}## direction.
Here is my depiction of the problem:
As far as I can tell, due to the symmetry of the problem, this integral should be zero.
$$\int_0^R \frac{r^2}{(x^2+r^2)^{3/2}}dr\hat{r}$$
I don't believe I need to...
The strategy will be to figure out what ##dq##, ##\hat{r}_{dq,p}##, and ##r_{dq,p}## are, plug them into the expression for ##d\vec{E}_{p_r}##, then integrate over ##d\vec{E}_{p_r}## to obtain ##\vec{E}_{p_r}##, the electric field at ##P## due to the arc on the right.
Then I will repeat the...
Hi all,
I have a doubt when calculating the electric field of a uniformly polarized cylinder P along its longest axis. The cylinder has length L and radius a.
Using Gauss's law:
$$\int D\cdot ds = \rho_{f} =0 \, \, (eq .1)$$
The electric field inside of cylinder would be: $$E =-...
The net Electric field(inside the dielectric):
$$E_{net} = \frac{1}{4\pi \varepsilon_0 \varepsilon_r} \frac{q}{r^2}$$
$$\vec E_{net} = \vec E_{applied} - \vec p$$
where p is the polarization vector.
let charge ##q_{-}## be present on the inner surface of dielectric and ##q_{+}## on the outer...
Hello, any answers appreciated:
'Two spheres are 5 m apart. Sphere 1 has a charge of -20 mC and sphere two has a charge of -50 mC. (a) Find the strength of the electric field at the sphere's halfway point. (b) Find the electric potential at the halfway point
Okay so this is how it looks like,and there are the given values;
a) I've tried it like this. So I now this formula $$ E = \frac{J}{\sigma} $$ where sigma is the conductivity value. Now to get E we need this formula;
$$ U = \int_{l}{} E \ ds ] $$ Now to get U we can use the ## U = \frac{P}{I}...
Hello. I am having some trouble to understand the resolution of this question.
We could easily try to calculate the electric field relative resultant at the screen. The problem i am having is about the amplitude of the electric field:
Generally, we have that the intensity part dependent of the...
Hello there, I have derived the expressions for electric field and potential to be the ones above, then for continuity at ##x = 0## I set the electric fields and potentials to be equal to yield the expressions:
$$Sx_p^2 = Kx_n^2$$
$$V_{bi} = V_n - V_p = \frac {q}{3\epsilon} \left( Sx_p^3 +...
The force on charge ##q_2## will depend on the electric field in medium with dielectric ##K_2##.
Electric field in this second dielectric due to ##q_1## is ##E = \dfrac {kq_1} {K_2r^2}## where r would be the distance from ##q_1##.
So, the electric field at the point where charge ##q_2## is...
hi guys
our instructor asked us to try to graph the projection of the electric field intensity at a certain point p(x,y) , for two charges q+-q located
at (-a,0) , (a,0), Now starting with the equation
$$\frac{dy}{dx} = \frac{E_{y}}{E_{x}}$$
after transforming this equation I got...
I'm preparing for exam but it seems I can't find problems similar to this on the internet.
Here I will apply Gauss's law on the electric field vector to get the charge density. but the problem is that I can't find similar examples on the internet that uses direct vectors on Maxwell's equations...
So I started with b)
and it there was no q2 this would seem reasonable
I was wanted to ask , what effect does q2 have on potential of these two charges? Because it has to be given for a reason.
My approach is thus: the shell will have induced charges if it's conducting resulting in E at the centre of shell(though flux at centre will be 0). For non conducting spheres there can be no induction only polarization of dipoles, therefore the E field at centre will remain 0. Is my approach...
So the change in potential energy is ∆U = Uf-Ui. Final minus initial. If i solve the above problem like this I end up with a negative value. The way the person in the attached work solved the problem, is they used ∆U = Ui-Uf. How are the switching Ui and Uf? What is it I am missing?
I am having trouble understand where area circled in red.
I get that lamda is Q/L. The charge is +Q. Length is pi/R/2.
I am having trouble understanding why the length is pi/R/2? Is it because the circumference of a circle is 2*pi*R and since we have broken this problem down to just...
Hi , I've been trying to manage a solution in my head and i think I'm on the right path , i just need some approval and maybe some tips.
So it's obvious I can't solve this without integration because law's only apply to point charges , and i can't shrink this object to a point as i could do with...
A science team from the university of Kassel (Germany) proved with a physical model, that a moderate electric field inactivates the Convid-19 virus.
Source:
https://www.nature.com/articles/s41467-021-25478-7
via...
My understanding is that the uniform electric field ##\vec E## cannot be the net electric field since the dipole creates its own electric field as shown in first diagram below, which must superimpose with the uniform electric field. So, yes, the uniform electric field ##\vec E## around the...
In a previous thread* the field in a charged ring was discussed and it was shown to be not zero except at the center. In *post #45 a video is referenced that says the field diverges as one gets close to the ring and it was argued that at very close distances the field looks like an infinite line...
The first part of the problem seems easy enough, the free electrons in the wire would move in a circle owing to an electric field that would be induced in the rod which would provide the centripetal force for the same (Please correct me if I am wrong). So we have $$eE=mω^2x$$, where e is the...
I am wondering if the phase diagram of Carbon has been explored at very large electric fields.
Can one make any theoretical guesses ?
In specific I am interested in Pressure Vs Electric field and Electric field vs Temperature at fixed temperature and pressure respectively.
I have broken the ring into a top arc and a bottom arc.
First, let's assume an imaginary charge of +1 C is placed at point P. We will determine the force on this unit charge from top and bottom arcs.
The charges in the top arc will result in electric fields that will all cancel each other...
Good afternoon to everybody. I have may be a stupid question according to the tangential part of the electric field near the surface of the conductor. Why is it zero? The normal part is zero on the distance of Debye cause of screening. But is this situation the same for horizontal direction...
When I look at the relevant equations, then there is no mention of field for a point on the surface of the shell, so it gets confusing. On the other hand, I feel the radial E will get stronger as we approach the surface of shell and magnitude of E will approach infinity.
I pretend to use the ecuation twice, once for the interior and another for the vaccum, so if I use the cilindrical coordinates for \nabla_t^2 it results in two Bessel equations, one for the interior and another fot the vaccum.
In the vaccum, the fields should experiment a exponential decay, in...
The only explanation that I have seen in textbooks is that since the outer spherical shell is symmetrical relative to internal charged spherical shell so field every where on the outer shell is same in magnitude at every point on it.
I can understand that electric field needs to be...
I have figured out how the force is towards left in the first case. I think it is due to the larger force on - charge.
Please help me out with the second and third case.
A wavefront is defined as a surface in space where the argument of the cosine has a constant value. So I set the argument of the cosine to an arbitrary constant s.
## k(\hat{u} \cdot r - c t) + \phi = s ##
The positional information is is in r, so I rearrange the equation to be
## \hat{u}...
I am thinking about how an electric field has energy associated with it. If a single electron exists alone in a remote vaccuum, I believe it has it's own electric field surrounding it, and that this field has an energy content associated with it. My question is; does this electric field store...