This is a bit of a multi-part question on impact engineering and FEA usage.
I am working on making my Alumina ceramic model as accurate as possible in ANSYS for impact simulations. But I am noticing a common theme, while using model parameters in scientific journals I am not getting any...
Just wondering if anyone here finds these video/picture leaks about UAP's (Unidentified Aerial Phenomenon) interesting and inspiring enough to try and figure out how they work? Pretty big game changer of technology and would be fun to discuss. I'm hoping at least someone agrees.
I thought the largest PE difference would be when the loop's area vector is in the same direction as the magnetic field, hence cos(0) =1, minus when the loop's area vector in perpendicular to the field, cos(pi/2) = 0. Just plug in the variables and you get 0.126 joules. Did I make a mistake?
I have always read that vacuum energy and zero point energy are established facts of physics supported by various observations of their effects both indirectly and even directly. But I have also read some comments from various physics discussion sites where they say that it is not a fact that...
Ei = 1/2 K (x)^ 2
K = .0152N/m
x = .0375 m
Ei = 1.06x10^-5
Ef= 1/2mv2 + mgh
m = .164kg, v is unknown, h is .0375sin(8.3)=.00541, Ef set equal to Ei
1.06x10^-5=1/2(.164kg)(v^2)+ (.164kg)(9.8)(.00541)
v = .3254m/s
I have gotten this answer multiple times but it is not correct. I am going...
There are six pairs. three turn out to be negative and three turn out to be positive (3q^2 - 3q^2) which nets zero when you add them together with the equation. But zero was the incorrect answer. Did I do something wrong? Thank you
I'm trying to wrap my head around the energy increment under constructive interference. In short, why does energy increase quadratically when each source emit EM wave that interferes constructively?
Suppose we have an array of identical and equidistant sources, each of which span the entire x-y...
The transition probability -- the probability that a particle which started out in the state ##\psi_a## will be found, at time ##t##, in the state ##\psi_b## -- is
$$P_{a \to b} = \frac{|V_{ab}|}{\hbar^2} \frac{sin^2[(\omega_0 - \omega)t/2]}{(\omega_0 - \omega^2}.$$
(Griffiths, Introduction...
As my current studies have proven conservation of energy is a universal law. How is it possible for two entangled particles to be equally or similarly affected when a force or energy is applied to a single member of the entangled pair? The production of such a pair would be invaluable to...
Can I understand that light energy contains heat energy?
or Do I have to separate between two concepts? because light energy from the sun makes heat energy after absorption of molecular?
We can find the potential energy by finding the potential difference between the two masses. the minimum distance between the two masses is 10 cm. The maximum is 30 cm because they can be 3 string lengths apart as they repulse each other once the string is cut.
So, to get potential difference...
On the Internet, I have read that the energy doesn't flow in the wire, for example in a very simple electric circuit made of a battery and a closed loop. When one computes the Poynting vector ##\vec S \propto \vec E \times \vec B##, one gets that its direction is towards the center of the wire...
Hello everyone, I'd like to share a doubt I am currently struggling with.
So we know that ΔU=−W, where ΔU is the difference of potential energy and Wthe work done by the force to move the body from point A to point B.
When analyzing this for the gravitational force, since we have U=−GmM/R, with...
##T-2mg=2ma_1## (acceleration of heavier mass)
##T-mg=ma_2##
(##-a_1=a_2##)
On solving the eqns, ##a_1=-g/3=-a_2##
##s=1/2at^2##
##s=-g/6## , distance covered by heavier mass.
##s=g/6## , covered by lighter mass.
Edit: ##\Delta U_1=mgh=-2mg^2/6## (decrease in U of heavier mass)
##\Delta...
Summary:: Looking for a certain degree program
What kind of degree would be best if I really wanted to get into studying energy within and around the human body and interactions of it between electronic signals and things like that? I am really starting to believe that our understanding of...
Hello!
Consider this circuit;
Now this is what happens with the circuit;
i)At time t0, switch S1 is closed and the capacitor has its maximum capacity at this time C = Cmax
ii)At time t1 the switch is opened
iii)Due to the mechanical vibration, the electrodes are drained from the capacitor...
We know that the Ug is converted to KE and Us. I thought that since the system loses energy after the collision that we shouldn't use the equation hnew= delta x + h.
I thought instead that maybe the h we should use is xmax, because that's when there is maximum Ug and there is no other energy...
Say we look at a spherical region of the sun where energy is mainly transported by radiation. Say this happens between some particular radius R and R + dr. Let the temperature at R be giving by T(r). At this particular radius let the gravitational acceleration be a reasonably well know function...
Hi there, I'm a bit confused about the E=hf equation for mass particle(f for frequency), and Lorentz Invariant (E^2 -p^2c^2=m^2c^4).
The question is, which energy is it? Total Energy- Kinetic plus Rest, or only kinetic energy.
Now, if it's total energy, then you get that a particle at rest...
As we always say eat food and rest because tomorrow you have to go to work. When we throw a ball up, it gains a max PE at some height. More the height more energy it has which makes it do more work. Is this right to say?
Energy required = ##\Delta E_p##
$$\Delta E_p = -\frac{GMm}{R}+\frac{GMm}{2R}$$
$$=-\frac{1}{2} \frac{GMm}{R}$$
$$=-\frac{1}{2} \frac{GMm}{R^2} R$$
$$=-\frac{1}{2} 40R$$
$$=-20R$$
But the answer key is 40R. Where is my mistake?
Thanks
I'm not interested in the mathematical derivation, the mathematical derivation already is based on the assumption that momentum is a vector and kinetic energy is a scalar, thus it proves nothing.
Specifically, what happens if we discuss scalarized momentum? What happens if we discuss vectorized...
I want to determine the normal flow depth in a perfectly horizontal circular conduit. The system characteristics are known (Internal pipe diameter, Mannings roughness, Discharge). However, I am not sure how to calculate the normal flow depth. When using Manning's equation one can find the normal...
The pistol shrimp creates a cavitation bubble by opening it's claw. For the barest fraction of a second temperatures within the bubble exceed those of the surface of the sun. That is an energy event comparable to a nuclear reaction.
Question one, Can this be mechanically duplicated and on a...
Toady we use energy sources like fossil fuels which in turn cause global warming, which is a slow process in which our planet changes its habitat to a hostile one for humans.
For a science fiction book idea I would like to know if there is a theoretical source of energy that using it would...
Its Good to be Back!
From Resnik, Fundamentals of physics: Consider a particle of mass m, moving along an x-axis and acted on by a net force F(x) that is directed along that axis. The work done on the particle by this force as the particle moves from position ##x_i## to position ##x_f## is given...
Hello! I see that in experiments at facilities like ISOLDE, they produce molecular beams at energies of tens of keV. If I understand it right, they first create the molecule as a positive ion, and using electric fields (and maybe magnetic for mass selection) they take the particle out of the...
This is from Taylor's classical mechanichs, 11.4, example of finding the Lagrangian of the double pendulum
Relevant figure attached below
Angle between the two velocities of second mass is
$$\phi_2-\phi_1$$
Potential energy
$$U_1=m_1gL_1$$
$$U_2=m_2g[L_1\cos(1-\phi_1)+L_2(1-\phi_2)]$$...
I solved this problem on my own using the Energy formula. When I compared my answer to online answers (attached) as well as the griffiths solution manual, I noticed they also include the Electric field outside the sphere into their calculations. I did not and only use the Electric Field inside...
Summary:: I have been trying to do this question for a while using the hydrostatic relationship to put rho and z in terms of p, however, I can not seem to end up with an answer. Can anyone suggest where to start.
The question is as follows:
Air is heated in a vertical piston–cylinder assembly fitted with an electrical resistor. The volume of the air slowly increases by 1.6 ft^3 while its pressure remains constant. The area of the piston is 1 ft^2. The mass of the air is 0.6 lb. The local acceleration of gravity is g = 32.0 ft/s^2...
1) Considering the forces on one of the moons, I have: ##\frac{GMm}{(10R)^2}+\frac{Gm^2}{(20R)^2}=m\frac{v^2}{10R}\Leftrightarrow v=\sqrt{\frac{G}{10R}(M+\frac{m}{4})}.##
2) Considering the initial situation in which the satellite is at rest on the surface of the planet...
In density functional theory (DFT), electron density is a central quantity. Because of this, we want to calculate electron - nuclei potential energy as functional on electron density. If we know how potential energy varies across space, we can calculate this functional with plugging particular...
Time indepedendent Schrödinger equation for a system (atom or molecule) consisting of N electrons can be written as (with applying Born - Oppenheimer approximation): $$ [(\sum_{i=1}^N - \frac {h^2} {2m} \nabla _i ^2) + \sum_{i=1}^N V(r_i) + \sum_{i < j}^N U(r_i,r_j)] \Psi = E \Psi $$
Terms in...
Here's my list of variables and things to account for:
m=100kg
Wnc=5000J
Wfriction=-500J
-Kinetic energy will be doubled (though I don't know how that plays into it exactly)
-I don't think there's any PE because it's on level ground
My idea of what the equation might be:
Wnc +1/2mv^2initial =...
What is the need to introduce the concept of work and energy when the motion can be completely understood by the concept of force and acceleration and momentum and velocity and displacement, etc?
Why do we need to understand the same thing once again in terms of Work and energy?
Also the kinetic...
Can a system be defined as the transfer of energy between two mediums?
An example of this approach is the Rankine cycle for a power plant (water and steam cycle)
This cycle would be defined by four systems.
System 1 (boiler feed pump)
Energy released by boiler feed pump…...Energy added to...
Hi all,
My question is about Doppler redshifts, but I'm going to mention cosmological redshifts first because I'm a lay person as far as cosmology's concerned (I'm an amateur astronomer and did a few introductory astrophysics/cosmology courses at university, but my degree focus was planetary...
Hello!
I have finished high school quite a few years ago. I did a physics course that went over nuclear fusion and fission, and I quite enjoyed it. However, I unfortunately no longer have those textbooks (I sold them on as many people do). Now I am doing a bit of programming in the field of...
1. From resnik, Halliday “Kinetic energy K is energy associated with the state of motion of an object. The faster the object moves , the greater is the kinetic energy”
If I am right this means that greater the kinetic energy, greater is its speed.
2. Force transfers energy to the body due to...
I am fairly certain that the answer here is to differentiate partially with respect to time rather than fully. In Landau and Lifshitz' proof of energy conservation one of the hypotheses is that the partial of L wrt time is zero. Am I on the right track?
I have read that almost 80 to 90% of our space is made of dark matter or Dark Energy. But what is the function of this Dark matter or energy? Is this something that binds stars, galaxies, etc? If not then what is the actual matter with Dark energy?
Ion traps are very complex, but one of my Physics Olympiad textbooks presents a simplified model of a resonating charged particle in an ion trap
A tuned circuit consists of an inductor and a parallel plate capacitor (capacitance C and plate separation d). It has a resonating frequency ##\nu...
I encountered a problem regarding the appropriate sign needed to be taken for the work done on a dipole when it rotates in a uniform electric field and would appreciate some help.
The torque on a dipole can be defined as
τ=PEsinθ
The work done on a dipole to move it from an angle ##\theta_0##...
Generally, energy is ##U=9\times 10^{9} \times \frac{5\times 10^{-6}30\times 10^{-6}}{2+(10+20)\times 10^{-2}}=0.5869 J##
<br/>
After touching, they have charges
##q_1 and q_2 = 35\mu C-q_1##
##\frac{q_1}{10}=\frac{35\mu C-q_1}{20}##
I was wondering where 1/10 and 1/20 coefficients come...
I'm trying to understand a little bit more about how k-values relate to rate-determining steps and energy diagrams. I always assumed that the lowest value of k (in the forward direction) was the RDS saw something in a handout that indicated otherwise. It explained that even though k1 > k2...